REQUEST FOR PROPOSAL

Final Design:

Final design engineering for .75 MG tank foundation

Proposal due

July 10, 2014

5:00 pm

For:

Meiners Oaks Water District

202 W. El Roblar

Ojai, Ca 93023

Issue Date: 6//14

Contents

<u>Description</u>		<u>Page</u>
Request for proposal		3
Background		3
Scope of services	Harmon and the second	4
General proposal Information	2	4
Anticipated Schedule	a	5
Terms		5
Qualifying Experience		6

Attachments:

Geotechnical Engineering report 09-2-6 dated February 6, 2009 By Earth Systems Southern California

Addendum to Geotechnical Report dated June 20, 2012

Plasticity Index File No. VT-24086-01 dated November 14, 2012

Second Addendum to Geotechnical report 09-2-6 dated February 9, 2009

Option 1 – Complete removal and replacement of unsuitable fills and native material Bengal Engineering May 6, 2014

Site plan

Tank plumbing details

Proposal sheet

Topographic survey of the Tank Farm

Request for Proposal

Meiners Oaks Water District is soliciting proposals for from selected engineering firms to provide professional Geotechnical Engineering services for final design and specifications for soil repair by removal and replacement. The area to be required will support a new 750,000 gallon water storage tank and foundation. Proposal shall include fee and schedule.

Background

MOWD is a purveyor supplying domestic fire protection water in Meiners Oaks, California. MOWD owns a parcel that serves as its water storage tank farm and maintenance yard. Originally the tank farm had a capacity of 1.75 million gallons comprised of three .5 MG and one .25 MG tanks. One of the three .5 MG tanks was recently demolished and the .25 MG tank will be demolished to make room for the new .75 MG tank.

The new tank will be a welded steel unit set upon a concrete ring foundation constructed over geo grid mats. The site however, is challenging, as it once was a large open reservoir. The reservoir was previously decommissioned and filled with uncertified material including dirt, rock, concrete, asphalt, steel, and other materials. Additionally, the site has high ground water and is located in an active seismic area.

Geotechnical information on this site is in the Earth Systems Southern California (ESYS) Geotechnical Engineering Report (2009), addendum (2012). ESYS also performed other investigative tests at the site including Cone Penetration Tests (CPT). The Report, Addendum, and CPT results are attached in this RFP.

Scope of Services

The proposal must cover Geotechnical Engineering Design and Specifications for R&R of the site according to Option One, Bengal May 6, 2014.

Deliverables shall be the design and Specification for:

- Volume and Extents of uncertified fill removal
- Certified fill Material
- Drawings of solution
- Geosnythetic and soil stabilization materials
- Compaction and compacting testing reuirements

General Proposal Information

- 1. Respondents are encouraged to carefully review this RFP and documents and provided materials in their entirety prior to preparation of proposals.
- 2. All proposals submitted will become the property of MOWD
- 3. A proposal may be considered non-responsive if conditional, incomplete, or if it contains alterations of form, additions not called for, or other irregularities that may constitute a material change to the proposal.
- 4. Proposals must be valid for a period of at least three (3) months from closing date and time of this solicitation. Proposals may not be withdrawn after the submission date.
- 5. MOWD reserves the right to:
 - Reject any and all proposals;
 - Select the proposal most advantageous to MOWD;
 - Verify all information submitted in the proposal;

Meiners Oaks Water District Ojai, Ca Request for final Design

- Withdraw this solicitation at any time without prior notice and furthermore, makes no representations that any contract will be awarded to any respondent responding to this solicitation;
- Negotiate the final contract with any respondent (s) as necessary to serve the best interests of MOWD;
- Amend this solicitation;
- Amend the final contract to incorporate necessary attachments and exhibits or to reflect negotiations between MOWD and the successful respondent.

Anticipated Schedule

This solicitation is subject to the following schedule:

• Solicit proposals Week of June 23, 2014

• Last Day for respondent comments or questions July 7, 2014

Proposals Due MOWD office
 5:00 pm July 10, 2014

• Notice of Recommended award to Board of Directors July 15, 2014

Notice to proceed
 July 16, 2014

Terms

Respondents are required to be California Registered Civil or Geotechnical Engineers.

Proposals shall be received by MOWD no later than July 10, 2014 5:00 pm

The final proposal fee shall be submitted as a Fixed-Fee total. Respondent shall also include a Fee Schedule.

Fixed Fee proposals shall be presented in this RFP.

A time frame for completion shall be included in the proposal. The time to complete will be evaluated and is an important component of this proposal. The time frame will be part of the negotiated contract terms.

MOWD and the selected Consultant will negotiate contract terms after selection.

The project will be awarded upon signing of an agreement or contract that outlines terms, scope, fee and other necessary items.

Qualifying Experience

The ideal responder will have relevant experience in Geotechnical Engineering and Soils repair.

Respondent shall provide a description along with contact information for any similar project experience that reflects work relevant to this project.

1731-A Walter Street Ventura, CA 93003 (805) 642-6727 FAX (805) 642-1325

June 20, 2012

VT-24086-01 12-6-23

Meiners Oaks County Water District Attention: Mike Hollebrands 202 W. El Roblar Drive

Meiners Oaks, California 93023

Project: Pr

Proposed Replacement Water Tanks

Meiners Oaks County Water District

Meiners Oaks Area of Ventura County, California

Subject:

Addendum to Geotechnical Engineering Report

Reference: Geotechnical Engineering Report, Two Proposed Water Tanks, Meiners Oaks Water

District, Meiners Oaks area of Ventura County, California. File VT-24086-01, Report

09-2-6, February 6, 2009, Earth Systems Southern California

Introduction

As authorized we have performed additional field studies to supplement the recommendations within the referenced Geotechnical Engineering Report for the proposed replacement water tanks. The additional field studies were necessary to define the depths of uncertified fills and current groundwater elevations. The following letter summarizes our field study and provides additional design parameters and geotechnical considerations.

Field Study

On May 2, 2012, four additional test pits were excavated near the proposed limits of the new tank diameters (see attached Site Plan). Bedrock was encountered in two of the test pits, but fill soils were not penetrated in two of the test pits because of a shallow water table. On May 30, 2012, two borings were drilled near the proposed limits of the new tank diameters. These borings penetrated the fill soils and encountered bedrock. The maximum depth explored within the test pits and borings was about 25.5 feet below the existing grade. The test pits were excavated with a subcontracted backhoe. The borings were drilled using a solid stem 8-inch, diameter, hollow stem auger powered by a CME-75 truck mounted drilling rig.

Samples within the test pits were obtained with a relatively lightweight hand sampler. Samples in the borings were obtained using an above ground automatic trip hammer. The samples within the borings were obtained by driving the samplers with a 140-pound automatic trip hammer dropping 30 inches in accordance with ASTM D 1586. The approximate locations of the test pits and borings were determined in the field by pacing and sighting, and are shown on the attached Site Plan. Samples were obtained within the test pits and borings with a Modified California (M.C.) ring sampler (ASTM D 3550 with shoe similar to ASTM D 1586), and with a Standard

12-6-23

Penetration Test (SPT) sampler (ASTM D 1586). The M.C. sampler has a 3-inch outside diameter and a 2.37-inch inside diameter. The SPT sampler has a 2-inch outside diameter and a 1.37-inch inside diameter. Bulk samples of the soils encountered were gathered from the excavation/auger cuttings. The final logs of the test pits and borings represent our interpretation of the contents of the field logs and the results of laboratory testing performed on the samples obtained during the subsurface study. The final logs are attached.

Revised Seismic Design Parameters

The site is located in southern California which is within an active seismic area where large numbers of earthquakes are recorded each year. Historically, major earthquakes felt in the vicinity of the Ojai area have originated from faults outside the area. These include the 1812 Santa Barbara Channel Earthquake, 1857 Fort Tejon earthquake, the 1872 Owens Valley earthquake, and the 1952 Arvin-Tehachapi earthquake.

This site, like all other sites in the general area, can be affected by moderate to major earthquakes centered on faults in southern California. An estimate of the seismic shaking that the proposed development could experience was made by a calculation (dividing the S_{DS} seismic design value by 2.5) as recommended in the 2010 California Building Code. This calculation results in an estimated peak horizontal ground acceleration of about 0.62-g.

The latest adopted version of the California Building Code (2010) specifies that peak ground acceleration for design purposes can be determined either from a site-specific study taking into account soil amplification effects or from results of regional probabilistic analyses of spectral accelerations with adjustments made based on subject site soil profile. The second option has been chosen for this study. The Unites States Geological Survey (USGS) has undertaken a probabilistic earthquake analysis that covers the continental United States. Determined spectral acceleration values can be adjusted for five common soil/rock classes. The site geographic coordinates (34.4624° north latitude and 119.2771° west longitude) were input into the USGS's web based Seismic Hazard Curves and Uniform Response Spectra calculator to determine the site's short term (0.2 sec.) and long term (1.0 sec.) spectral accelerations. Spectral acceleration parameters that are applicable to seismic design as well as a list of nearby faults are attached to this letter.

Additional Geotechnical Considerations

It is our understanding that two to three of the existing water tanks may be replaced by two new water tanks because of performance and capacity issues. Since the preparation of the referenced Geotechnical Engineering Report, the past topographic map representing the open reservoir has been overlain with the current topography and tank/building locations. This overlay map indicates approximately 30 feet of uncertified fill at the center of the reservoir and areas of the uncertified fill under the portions of the existing tanks. This is consistent with the results of the previous (ESSC 2009) and current field explorations.

The referenced Geotechnical Engineering Report provided five methods for mitigating the potential settlement below the proposed water tanks. It is our understanding that the Client's preferred method is utilizing rammed aggregate piers (RAP's). As previously discussed In the referenced report, the contractor should determine the RAP's construction feasibility and design. This design should include depth, spacing, and diameter of the RAP's. At a minimum the RAP's June 20, 2012 VT24086-01 12-6-23

should be overlain by an approximately 5-foot mat of engineered fill to provide a uniform support for the tank base. Any dewatering for construction purposes should be performed cautiously to minimize the effect of reducing pore water pressure and buoyancy forces which could lead to additional settlement below the existing tanks for which removal is not planned.

Please call if you have any questions, or if we can be of further service.

Respectfully submitted,

EARTH SYSTEMS SOUTHERN CALIFORNIA

Todd J. Tranby

Todd J. Tranby Sengineering Geologist

Reviewed and Approved

Richard M. Beard Geotechnical Engineer GE 128
Exp. 12-31-13

OF CALLED SHIP

Attached:

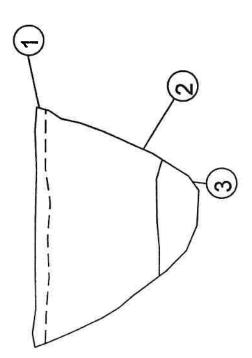
Test Pit Logs

Boring Logs Site Plan

Earthquake Hazard Analysis

2010 California Building Code (CBC) (ASCE 7-05) Seismic Design Parameters

Table 1 Fault Parameters


Copies:

3 - Meiners Oaks County Water District; Attention: Mike Hollebrands

1 - WREA; Attention: Barney Caudill

1 - Project File

N35E

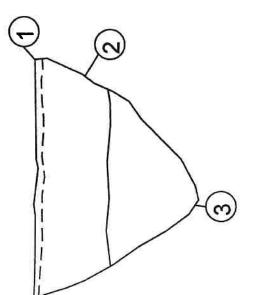
DESCRIPTIONS

- **1. TOPSOIL (SM):** Silty fine sand with; slightly moist; loose to medium dense; brown.
- 2. SOIL (SM): Silty fine to medium sand; moist; medium dense to dense; dark brown.
- 3. WEATHERED BEDROCK (Tsp): Fine to medium Sespe sandstone weathers to silty fine to medium sand; moist; dense to very dense; dark brown.

FINAL DEPTH: 9.0 FEET
RING SAMPLE @ 3.0 FEET
RING SAMPLE @ 5.0 FEET
RING SAMPLE @ 7.0 FEET
BULK SAMPLE @ 0-5 FEET
NO GROUNDWATER ENCOUNTERED

TEST PIT #9

Meiners Oaks Water District Ventura County, CA


Earth Systems Southern California

May 2, 2012

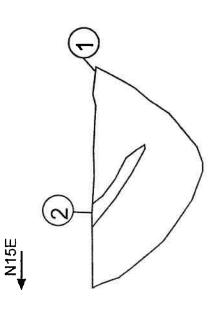
VT-24086-01

SCALE: 1" = 5' (VERTICAL & HORIZONTAL)

- **1. TOPSOIL (SM):** Silty fine sand with; slightly moist; loose to medium dense; brown.
- 2. ARTIFICIAL FILL (SM): Silty clayey sand with some fine to medium gravel; moist; medium dense to dense; yellow brown.
- **3. ARTIFICIAL FILL (SC):** Clayey silty sand to sandy silty clay; moist to wet; medium dense to loose; red brown.

FINAL DEPTH: 9.0 FEET
RING SAMPLE @ 3.0 FEET
RING SAMPLE @ 7.0 FEET
BULK SAMPLE @ 0-5 FEET
GROUNDWATER ENCOUNTERED @ 9.0 FEET
GROUNDWATER STABILIZED @ 8.5 FEET

TEST PIT #10


Meiners Oaks Water District Ventura County, CA

Earth Systems Southern California

May 2, 2012

VT-24086-01

- 1. WEATHERED BEDROCK (TSP): Fine to coarse Sespe sandstone weathers to fine to coarse silty sand; moist; dense to very dense; yellow brown.
- 2. WEATHERED BEDROCK (TSP): Sespe siltstone, moist; dense; dark brown.

FINAL DEPTH: 6.5 FEET RING SAMPLE @ 3.0 FEET RING SAMPLE @ 5.0 FEET BULK SAMPLE @ 0-5 FEET NO GROUNDWATER ENCOUNTERED

TEST PIT #11

Meiners Oaks Water District Ventura County, CA

Earth Systems Southern California

May 2, 2012

VT-24086-01

SCALE: 1" = 5' (VERTICAL & HORIZONTAL)

1. ARTIFICIAL FILL (SM/GW): Silty sand with boulders, concrete debris, metal debris, and brick debris; slightly moist; medium dense to loose; brown.

FINAL DEPTH: 6.5 FEET NO GROUNDWATER ENCOUNTERED

TEST PIT #12

Meiners Oaks Water District Ventura County, CA

Earth Systems Southern California

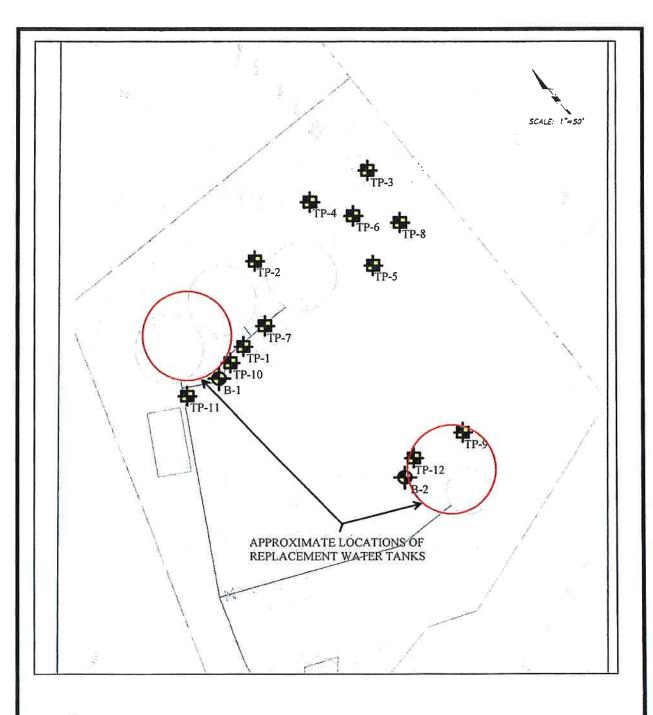
May 2, 2012

VT-24086-01

SCALE: 1" = 5' (VERTICAL & HORIZONTAL)

1731-A Walter Street, Ventura, California 93003 PHONE: (805) 642-6727 FAX: (805) 642-1325

	BORI	NG I	NO: 1		***					DRILLING DATE: May 30, 2012
	PRO.	JECT	NAN	ΛE: N	leiners Oaks	Wate	r Distr	ict		DRILL RIG: CME-75
	PRO.	JECT	NUN	NBEF	R: VT-24086-	01				DRILLING METHOD: 8" Hollow Stem
	BORI	NG L	OCA	OIT	N: Per Plan					LOGGED BY: G. Olin
	Vertical Depth		ple Ty	Calif.	PENETRATION RESISTANCE (BLOWS/6"	SYMBOL	USCS CLASS	UNIT DRY WT. (pcf)	MOISTURE CONTENT (%)	DESCRIPTION OF UNITS
	align*	Bulk	SPT	Mod.	ES BLC	≥ .	ည္သ	S (S)	<u> ह</u> े ह	
0		B	S	M		S		28		
_				Щ	4/4/3		SM			ARTIFICIAL FILL: Sitty fine sand with concrete, asphalt, and rock gravel; slightly moist; loose; moderate yellowish brown
5					2/3/2		SM			ARTIFICIAL FILL: Same as above
10					P/P/P		ML			ARTIFICIAL FILL: Very fine sandy silt; wet; very soft; dark yellowish brown
15					18/38/50 for 5.5"		TSP			SESPE FORMATION: Fine sandy siltstone to silty sandstone; slightly moist to moist; very hard; dark reddish brown; calcium carbonate in fractures
20					46/50 for 5"		TSP			SESPE FORMATION: Fine to medium silty sandstone; sightly moist to moist; very hard; yellow brown
25	==				50 for 5"		TSP			SESPE FORMATION: Same as above
	 									TOTAL DEPTH: 25.5 Feet
30										Water Encountered From 8 to 13.5 Feet
								j.		
35										
- 1										
- 1										·
- 1										1
								Note: The s	tratification	n lines shown represent the approximate boundaries


between soil and/or rock types and the transitions may be gradual.

1731-A Walter Street, Ventura, California 93003 PHONE: (805) 642-6727 FAX: (805) 642-1325

	BORI	NG I	NO: 2	2			311			DRILLING DATE: May 30, 2012
					leiners Oaks		r Distri	ct		DRILL RIG: CME-75
					R: VT-24086-	01				DRILLING METHOD: 8" Hollow Stem
	BORI			-	N: Per Plan	_				LOGGED BY: G. Olin
0	Vertical Depth	Sam Bulk	ple Ty	Mod. Calif.	PENETRATION RESISTANCE (BLOWS/6"	SYMBOL	USCS CLASS	UNIT DRY WT. (pcf)	MOISTURE CONTENT (%)	DESCRIPTION OF UNITS
5					8/20/12		SM			ARTIFICIAL FILL: Silty fine sand with concrete, asphalt, and rock gravel; slightly moist; loose; moderate yellowish brown
10					5/8/5		SC			ALLUVIUM: Clayey silty sand; moist to wet; loose; dark gray
15	 				6/2/3		sc			ALLUVIUM: Gravelly clayey silty sand; wet; loose; mottled dark gray
20					50 for 5.5"		TSP			SESPE FORMATION: Fine sandy siltstone to silty sandstone; slightly moist to moist; very hard; dark reddish brown; calcium carbonate in fractures
25					50 for 5.5"		TSP			SESPE FORMATION: Same as above
30 35										TOTAL DEPTH: 25.5 Feet Water Encountered From 8 to 16 Feet

Note: The stratification lines shown represent the approximate boundaries between soil and/or rock types and the transitions may be gradual.

TP-1 TEST PIT LOCATIONS

B-1 BORING LOCATIONS

SITE PLAN

Meiners Oaks Water District Ventura County, California

Earth Systems
Southern California

JUNE 2012

VT-24086-01

Seismic Use Group:

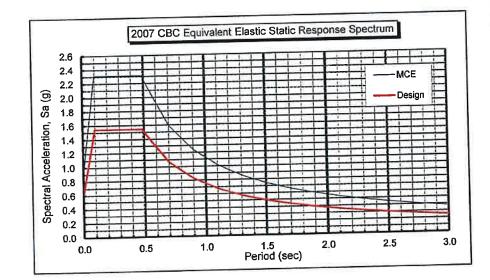
1

Normal

EQHAZ-NG3.xls - EARTHQUAKE HAZARD ANALYSIS - N ext Generation

Microsoft Excel Spreadsheet Developed 2008 to 2011 by Shelton L. Stringer, PE, GE, PG, EG

Project: Meiners Oaks Water District File No: VT-24086-01 Date: 6/14/12 Latitude: 34.4624 Table # Longitude: -119.2771 Site Class: Vs30 (m/s): 560 Overide Selected Most Significant Fault Information Fault # 133 133 Magnitude (M_w): 6.8 Mission Ridge-Arroyo Parida-Santa Ana Magnitude (M_w): 6.8 3.2 Distance: km (2.0 mi.) Distance, km: 3.2 Fault Type: 1 Reverse Fault Type: 1 Return Interval: Annual p: #VALUE! years Return Interval Fault Selected on: Deterministic max PGA CBC Enter IBC or CBC Use Code:


Summary of Key Calculated Spectral Accelerations (Sa) to Construct 2010 CBC (ASCE 7-05) Spectrum

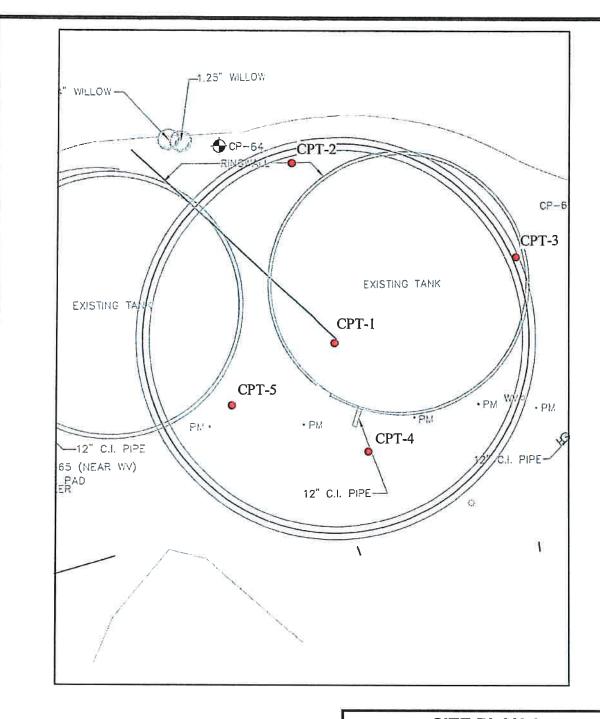
	Determ.	& Prob (2	%/50 yr) Spect	ral Acc -Site C	Site C	lass C	Use Calc.	(0)/Mapped (1):	1	
Period	m Determ.	Probab.	1.5Determ	MCE	Site	MCE	Design			
T (sec)	Sa(g)	Sa(g)	Sa(g)	Sa (g)	Factor	Sa (g)	Sa (g)	Enter M	apped Valu	es Below
PGA	0.623	0.944	0.934	0.858	1.000	0.924	0.572	PGA	0.924	g
0.20	1.429	2.299	2.144	2.144	1.000	2.310	1.429	Ss	2.310	g
1.00	0.472	0.855	0.708	0.708	1.300	1.114	0.613	51	0.857	g

Site Cl	ass B/C - sof	ft rock , PE ir	50 yrs	NGA (1.0)	mean Det	erministic	Use Site Sa, based on:			
2002 US	GS Data	2008 U	SGS Data	Site	2002 USGS	2008 NGA	2002 De	term. (USG	S Combined	
10%	2%	10%	2%	Factor	Sa (g)	Sa (g)	Sa (g)	Choose:		
0.571	0.944	0.438	0.823	1.000	0.623	0.438	0.623	0	Determ.	
1.350	2.299	1.072	2.102	1.000	1.429	1.042	1.429	10%	in 50 years	
0.489	0.855	0.337	0.667	1.000	0.472	0.384	0.472	2002	Year	
	2002 US 10% 0.571 1.350	2002 USGS Data 10% 2% 0.571 0.944 1.350 2.299	2002 USGS Data 2008 USGS Data 10% 2% 10% 0.571 0.944 0.438 1.350 2.299 1.072	10% 2% 10% 2% 0.571 0.944 0.438 0.823 1.350 2.299 1.072 2.102	2002 USGS Data 2008 USGS Data Site 10% 2% 10% 2% Factor 0.571 0.944 0.438 0.823 1.000 1.350 2.299 1.072 2.102 1.000	2002 USGS Data 2008 USGS Data Site 2002 USGS 10% 2% 10% 2% Factor Sa (g) 0.571 0.944 0.438 0.823 1.000 0.623 1.350 2.299 1.072 2.102 1.000 1.429	2002 USGS Data 2008 USGS Data Site 2002 USGS 2008 NGA 10% 2% 10% 2% Factor Sa (g) Sa (g) 0.571 0.944 0.438 0.823 1.000 0.623 0.438 1.350 2.299 1.072 2.102 1.000 1.429 1.042	2002 USGS Data 2008 USGS Data Site 2002 USGS Data 2008 USGS Data Site 2002 USGS Data 2008 USGS Data 2002 December 10% 2% 10% 2% Factor Sa (g) Sa (g) Sa (g) Sa (g) 0.571 0.944 0.438 0.823 1.000 0.623 0.438 0.623 1.350 2.299 1.072 2.102 1.000 1.429 1.042 1.429	2002 USGS Data 2008 USGS Data Site 2002 USGS Data 2002 Determ. (USG 10% 2% 10% 2% Factor Sa (g) Sa (g) Sa (g) Choose: 0.571 0.944 0.438 0.823 1.000 0.623 0.438 0.623 0 1.350 2.299 1.072 2.102 1.000 1.429 1.042 1.429 10%	

2010 California Building Code (CBC) (ASCE 7-05) Seismic Design Parameters

Seismic Design Category Site Class Latitude: Longitude:		E C 34.462 N -119.277 W	CBC Reference Table 1613.5.6 Table 1613.5.2	ASCE 7-05 Reference Table 11.6-2 Table 20.3-1
Maximum Considered Earthquake (MCE) Gro Short Period Spectral Reponse 1 second Spectral Response Site Coefficient Site Coefficient	Sund Mo S _S S ₁ F _a F _v S _{MS} S _{M1}	2.310 g 0.857 g 1.00 1.30 2.310 g 1.114 g	Figure 1613.5 Figure 1613.5 Table 1613.5.3(1) Table 1613.5.3(2) = $F_a * S_s$ = $F_v * S_1$	Figure 22-3 Figure 22.4 Table 11.4-1 Table 11-4.2
Design Earthquake Ground Motion Short Period Spectral Reponse 1 second Spectral Response	S _{DS} S _{D1} To Ts	1.540 g 0.743 g 0.10 sec 0.48 sec	$= 2/3*S_{MS}$ $= 2/3*S_{M1}$ $= 0.2*S_{D1}/S_{DS}$ $= S_{D1}/S_{DS}$	Doci

	Design
Period	Sa
T (sec)	(g)
0.00	0.616
0.05	1.095
0.10	1.540
0.48	1.540
0.70	1.061
0.90	0.825
1.10	0.675
1.30	0.571
1.50	0.495
1.70	0.437
1.90	0.391
2.10	0.354
2.30	0.323
2.50	0.297
2.70	0.275
2.90	0.256


Table 1
Fault Parameters

Control of the Contro]	Fault I	arame	ters						
			Avg	Avg	Avg	Trace	1111 11		Mean	
			Dip	Dip	Rake	Length	Fault	Mean		Slip
Fault Section Name	Dista		Angle				Type	Mag	Interval	Rate
	(miles)	(km)	(deg.)	(deg.)	(deg.)	(km)			(years)	(mm/yr)
Mission Ridge-Arroyo Parida-Santa Ana	2.0	3.2	70	176	90	69	В	6.8		0.4
Santa Ynez (East)	3.7	5.9	70	172	0	68	В	7.2		2
Sisar	4.2	6.8	29	168	na	20	B'	7.0		
San Cayetano	6.8	10.9	42	3	90	42	В	7.2		6
Red Mountain	8.7	14.0	56	2	90	101	В	7.4		2
Pine Mtn	9.8	15.7	45	5	na	62	B'	7.3		
Ventura-Pitas Point	11.4	18.4	64	353	60	44	В	6.9		1
North Channel	13.0	20.9	26	10	90	51	В	6.7		1
Oak Ridge (Onshore)	14.4	23.1	65	159	90	49	В	7.2		4
Oak Ridge (Offshore)	14.6	23.4	32	180	90	38	В	6.9		3
Big Pine (Central)	15.0	24.1	76	167	na	23	B'	6.3		
Big Pine (West)	16.4	26.4	50	2	na	18	B'	6.5		
Big Pine (East)	19.6	31.5	73	338	па	23	B'	6.6		
Simi-Santa Rosa	19.7	31.8	60	346	30	39	В	6.8		1
Santa Ynez (West)	20.6	33.1	70	182	0	63	В	6.9		2
Pitas Point (Upper)	21.3	34.3	42	15	90	35	В	6.8		1
Nacimiento	22.7	36.5	66	40	na	113	B'	7.1		
Pitas Point (Lower)-Montalvo	23.1	37.2	16	359	90	30	В	7.3		2.5
Channel Islands Western Deep Ramp	27.0	43.4	21	204	90	62	B'	7.3		
Oak Ridge (Offshore), west extension	27.0	43.5	67	195	na	28	B'	6.1		
Malibu Coast (Extension), alt 1	27.1	43.7	74	4	30	35	B'	6.5		
Malibu Coast (Extension), alt 2	27.1	43.7	74	4	30	35	B'	6.9		
San Andreas (Big Bend)	27.9	45.0	90	198	180	50	Α	7.8	108	34
San Gabriel	28.7	46.2	61	39	180	71	В	7.3		1
Santa Susana, alt 2	29.5	47.4	53	10	90	43	B'	6.8		
Holser, alt 1	29.9	48.1	58	187	90	20	В	6.7		0.4
Holser, alt 2	29.9	48.1	58	182	90	17	B'	6.7		
Del Valle	29.9	48.1	73	195	90	9	B'	6.3		
Santa Susana, alt 1	29.9	48.1	55	9	90	27	В	6.8		5
Channel Islands Thrust	30.2	48.5	20	354	90	59	В	7.3		1.5
Garlock (West)	32.2	51.8	90	149	0	98	Α	7.6	493	6
Northridge	32.3	52.0	35	201	90	33	В	6.8		1.5
San Andreas (Mojave N)	32.4	52.2	90	199	180	37	Α	7.8	106	27
Pitas Point (Lower, West)	32.5	52.3	13	3	90	35	В	7.2		2.5
South Cuyama	33.0	53.1	33	210	na	48	B'	6.8		
Pleito	33.1	53.3	46	181	90	44	В	7.1		2
Santa Cruz Island	33.1	53.3		188	30	69	В	7.1		1
San Andreas (Carrizo) rev	34.0	54.7		224	180	59	Α	7.8	106	34
Northridge Hills	34.4	55.4		19	90	25	B'	7.0		
Anacapa-Dume, alt 1	34.5	55.5		354	60	51	В	7.2		3

Reference: USGS OFR 2007-1437 (CGS SP 203)

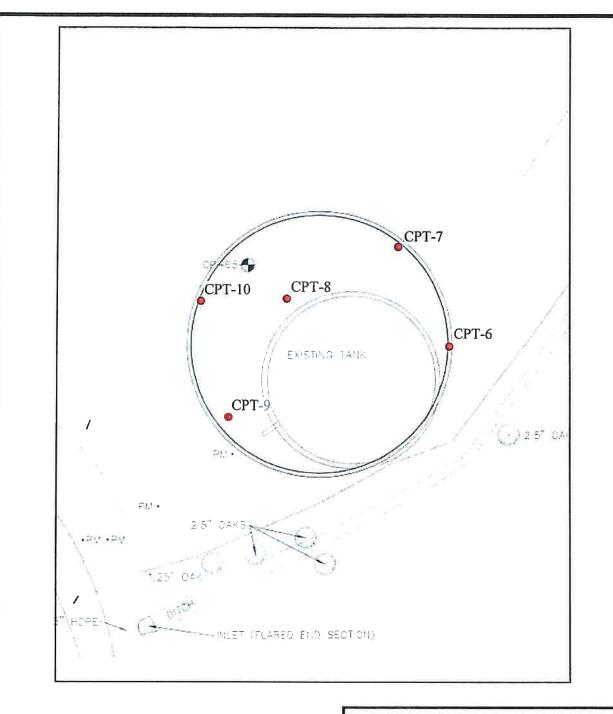
Based on Site Coordinates of 34.4624 Latitude, -119.2771 Longitude

Mean Magnitude for Type A Faults based on 0.1 weight for unsegmented section, 0.9 weight for segmented model (weighted by probability of each scenario with section listed as given on Table 3 of Appendix G in OFR 2007-1437). Mean magnitude is average of Ellworths-B and Hanks & Bakun moment area relationship.

APPROXIMATE CPT LOCATION

SITE PLAN 1

MEINERS OAKS WATER TANKS VENTURA COUNTY, CALIFORNIA



Earth Systems
Southern California

JANUARY 2013

VT-24086-02

NOT TO SCALE

APPROXIMATE CPT LOCATION

SITE PLAN 2

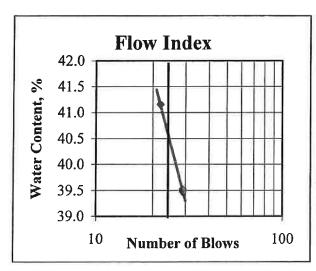
MEINERS OAKS WATER TANKS VENTURA COUNTY, CALIFORNIA

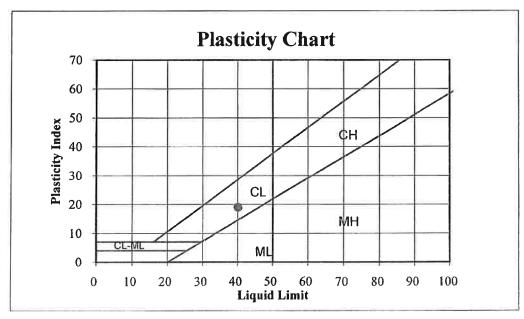
Earth Systems
Southern California

JANUARY 2013

VT-24086-02

NOT TO SCALE

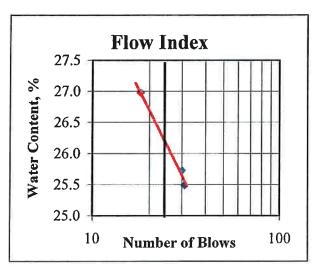

Job Name: Meiners Oaks Water District

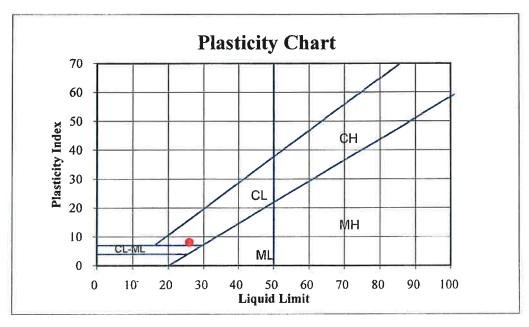

Sample ID: TP 13 Soil Description: CL

D	Δ	Т	Δ	SI	ITN	ΛN	/	Δ	R	v
$\boldsymbol{\nu}$	$\boldsymbol{\alpha}$		a	יט	ינט			_	.1.	

TEST RESULTS

Number of Blows:	22	29	29	LIQUID LIMIT	40	
Water Content, %	41.2	39.5	39.5	PLASTIC LIMIT	21	
Plastic Limit:	21.0	21.2	P	LASTICITY INDEX	19	

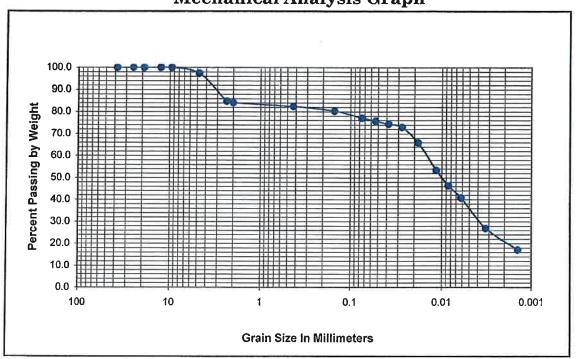

Job Name: Meiners Oaks Water District


Sample ID: TP 14 Soil Description: CL-ML

DATA SUMMARY

TEST RESULTS

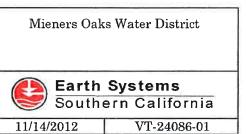
Number of Blows:	18	30	31	LIQUID LIMIT	26
Water Content, %	27.0	25.7	25.5	PLASTIC LIMIT	18
Plastic Limit:	17.8	17.5	P	LASTICITY INDEX	8



Sample Number TP 13 Date: 11/14/2012

Tech.

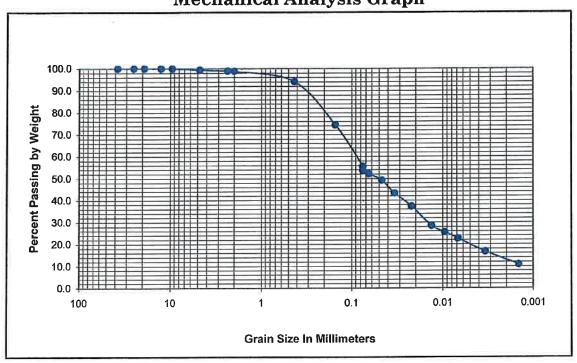
SD


Mechanical Analysis Graph

Mechanical Analysis							
Sieve	Percent						
Size	Passing						
1 1/2	100.0						
1	100.0						
3/4	100.0						
1/2	100.0						
3/8	100.0						
#4	97.4						
#8	84.8						
#10	84.1						
#40	82.3						
#100	80.2						
#200	77.1						

Summary of Sieve Results					
	Hydrometer Analysis				
	Particle	Percent			
	Diameter	Passing			
	0.0745	77.1			
	0.0533	75.7			
	0.0381	74.3			
11 25	0.0273	72.9			
10	0.0182	65.9			
	0.0115	53.4			
	0.0084	46.4			
	0.0062	40.8			
	0.0032	26.9			
ă a	0.0014	17.1			

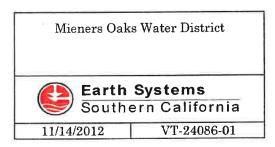
A STATE OF THE STA			
Particle Distribution			
Particle	Percent of		
Name	Sample		
Gravel	2.6		
Sand	20.3		
Silt	46.8		
Clay	30.3		



Sample Number TP 14
Date: 11/14/2012

Tech.

SD


Mechanical Analysis Graph

Mechanical Analysis			
Sieve Percent			
Size	Passing		
1 1/2	100.0		
1	100.0		
3/4	100.0		
1/2	100.0		
3/8	100.0		
#4	99.4		
#8	99.0		
#10	98.8		
#40	94.1		
#100	74.5		
#200	55.5		

Summary of Sieve Results			
	Hydromete	r Analysis	
	Particle	Percent	
	Diameter	Passing	
	0.0746	53.6	
	0.0644	52.1	
	0.0463	49.2	
	0.0337	43.3	
	0.0220	37.4	
	0.0132	28.5	
	0.0095	25.5	
	0.0068	22.6	
	0.0034	16.7	
	0.0015	10.8	

Particle D	istribution		
Particle	Percent of		
Name	Sample		
Gravel	0.6		
Sand	43.8		
Silt	37.5		
Clay	18.1		

CERTIFICATE OF ANALYSIS

Client: Earth Systems Southern California CAS LAB NO: 123321

Date Sampled: 11/07/12 Date Received: 11/07/12 Sample Matrix: Soil

Analyst: AN

WET CHEMISTRY SUMMARY

COMPOUND	RESULT	UNITS	DF	PQL	METHOD	ANALYZED
CAS Lab #: 12332: Sample ID: TP13	1-01					
pH (Corrosivity)	7.3	s.u.	1		9045	11/08/12
CAS Lab #: 123321-02 Sample ID: TP14						
pH (Corrosivity)	7.2	s.u.	1		9045	11/08/12
Organic Matter	2.8	. 8	1	0.05	ASTM D2974	11/08/12

1731-A Walter Street Ventura, CA 93003 (805) 642-6727 FAX (805) 642-1325

December 14, 2012

Project No.: VT-24086-02 Report No.: 12-12-34

Mike Hollebrands Meiners Oaks Water District 202 W. El Roblar Drive Meiners Oaks, California 93023

Project:

Proposed Replacement Water Tanks

Meiners Oaks Water District

Meiners Oaks Area of Ventura County, California

Subject:

Second Addendum to Geotechnical Engineering Report

- References: 1. Geotechnical Engineering Report, Two Proposed Water Tanks, Meiners Oaks Water District, Meiners Oaks area of Ventura County, California. File VT-24086-01, Report 09-2-6, February 6, 2009, Earth Systems Southern California
 - 2. Addendum to Geotechnical Engineering Report, Proposed Replacement Water Tanks, Meiners Oaks Water District, Meiners Oaks area of Ventura County, California. File VT-24086-01, Report 12-6-23, June 20, 2012, Earth Systems Southern California

Introduction

As authorized we have performed additional field studies and laboratory testing for the proposed replacement water tanks. The additional field studies were based on recommended testing by the construction contractor Hayward Baker. The following letter summarizes our field study and laboratory testing.

Field Study

On October 30, 2012, two additional test pits (TP-13 and TP-14) were excavated near the proposed limits of the new tank diameters (see attached Site Plan) to obtain bulk samples of the soils from the ground surface to the bottoms of the test pits. The bulk samples will be transported to Hayward Baker for soil-cement testing. The depths of the test pits were about 6.5 to 7 feet, respectively, below the existing grade. The test pits were excavated with a backhoe. The final logs of the test pits represent our interpretation of the contents of the field logs and the results of laboratory testing performed on the samples obtained during the subsurface study. The final logs are attached.

On October 30, 2012, ten cone penetrometer tests (CPT's) were performed to depths of refusal. The CPT exploration was conducted by Kehoe Testing and Engineering by hydraulically advancing a 15 cm² conical probe into the ground using an approximately 30-ton truck as a reaction mass. An electronic data acquisition system recorded a near-continuous log of the

Project No.: VT-24086-02 Report No.: 12-12-34

resistance of the soil against the cone tip (Q_c) and soil friction against the cone sleeve (f_s) as the probe was advanced. Resistance readings were recorded for every 2.5 cm (about 1 inch) of depth. Empirical relationships (Robertson et al, 1990) were applied to the data to give a near-continuous profile of soil stratigraphy. Interpretation of CPT data provides correlations for SPT blow count, internal friction angle, undrained strength (S_u) of clays, and soil type. Logs of the CPT soundings are attached to this letter. The approximate locations of the CPT's were determined in the field by pacing and sighting, and are shown on the attached Site Plan.

Laboratory Testing

The results of the following laboratory testing are attached to this letter.

Plasticity index testing was performed on the two bulk samples in general accordance with ASTM 4318.

The gradation characteristics of the two bulk samples were made by hydrometer (in accordance with ASTM D 422) and sieve analysis procedures. The samples were soaked in water until individual soil particles were separated and then washed on the No. 200 mesh sieve, oven dried, weighed to calculate the percent passing the No. 200 sieve and then mechanically sieved.

The testing of pH was performed for both of the bulk samples by Capco Analytical.

Please call if you have any questions, or if we can be of further service.

TODD J. TRANBY NO. 2078 CERTIFIED ENGINEERING

Respectfully submitted,

EARTH SYSTEMS SOUTHERN CALIFORNIA

7

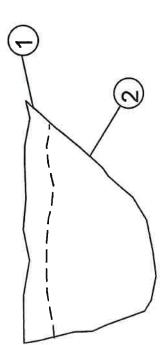
Todd J. Tranby Engineering Geologist

Attached:

Test Pit Logs

CPT Logs Site Plan

Laboratory Data


Copies:

1 - Meiners Oaks County Water District; Attention: Mike Hollebrands

1 - WREA; Attention: Barney Caudill

1 - Hayward Baker; Attention: Lisheng Shao

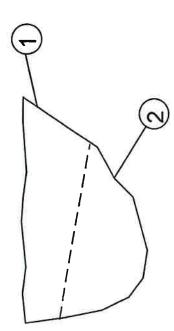
1 - Project File

- 1. ARTIFICIAL FILL (SM): Silty gravelly sand; slightly moist to moist; loose to medium dense; yellow brown.
- medium stiff; dark brown to dark yellow brown; organics. 2. ARTIFICIAL FILL (ML): Sandy clayey silt; moist;

BULK SAMPLE @ 2-7 FEET NO GROUNDWATER ENCOUNTERED FINAL DEPTH: 7.0 FEET

TEST PIT #14

Meiners Oaks Water District Ventura County, CA



Earth Systems Southern California

NOVEMBER 2012

VT-24086-02

N10W

DESCRIPTIONS

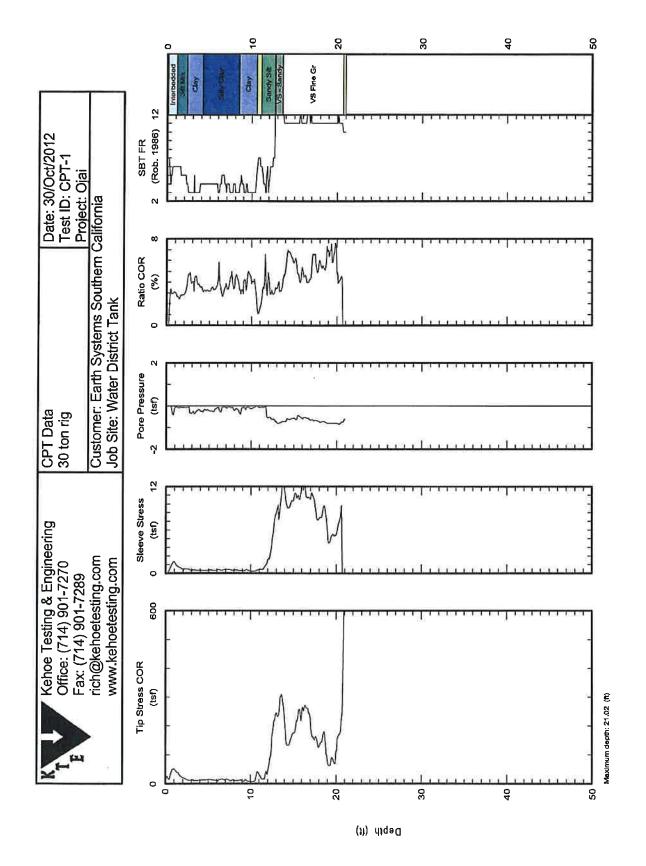
1. ARTIFICIAL FILL (SM): Silty sand with metal, concrete, asphalt, and wood debris; dry to slightly moist; loose; brown.

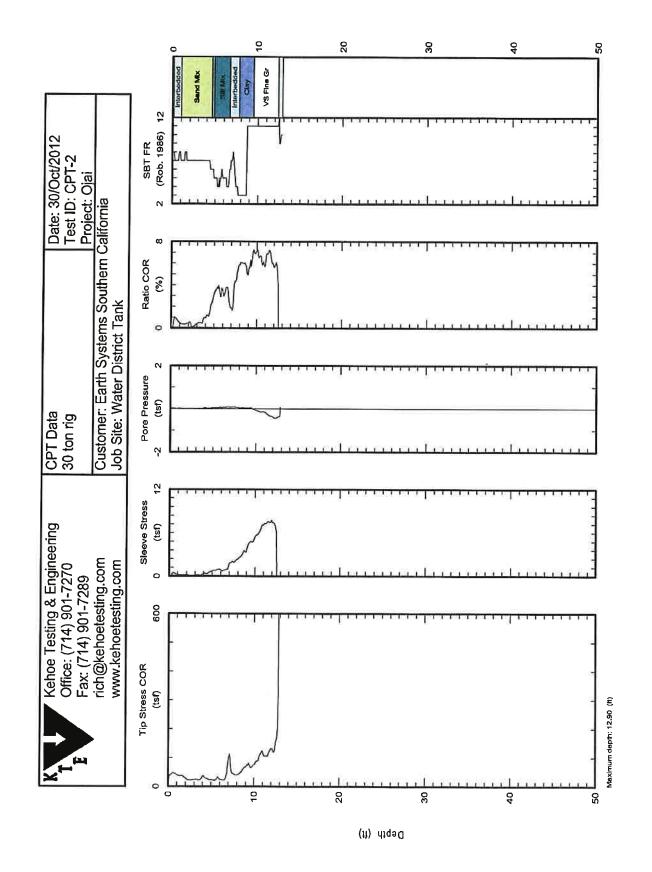
2. SOIL (SM): Clayey silty sand; moist; medium dense; dark red brown.

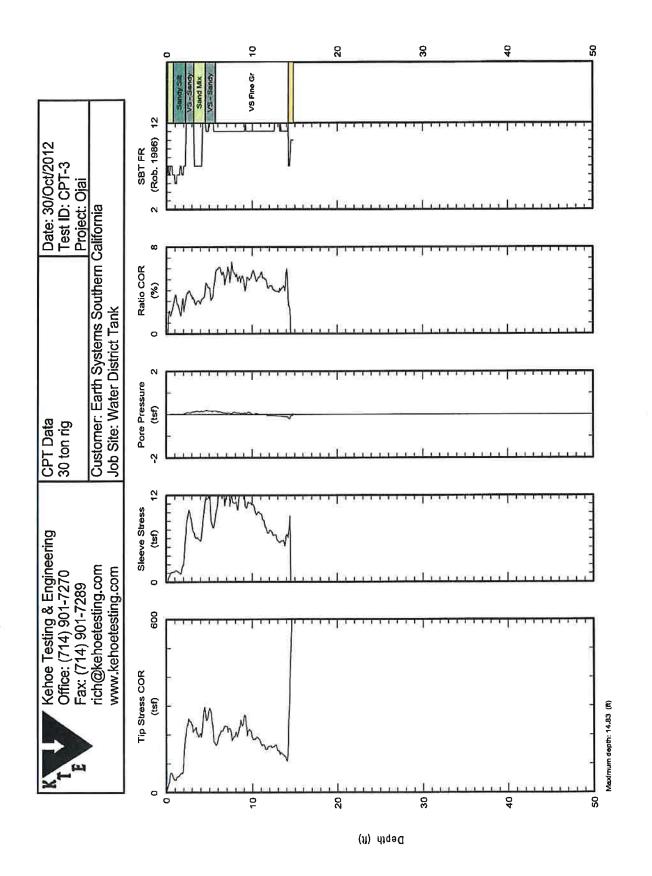
FINAL DEPTH: 6.5 FEET BULK SAMPLE @ 3-6 FEET NO GROUNDWATER ENCOUNTERED

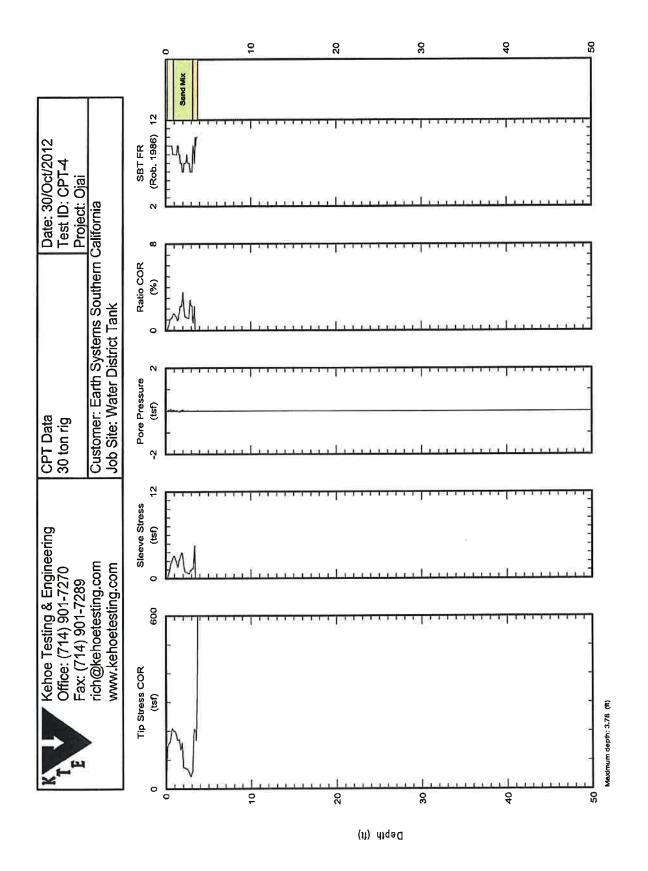
TEST PIT #13

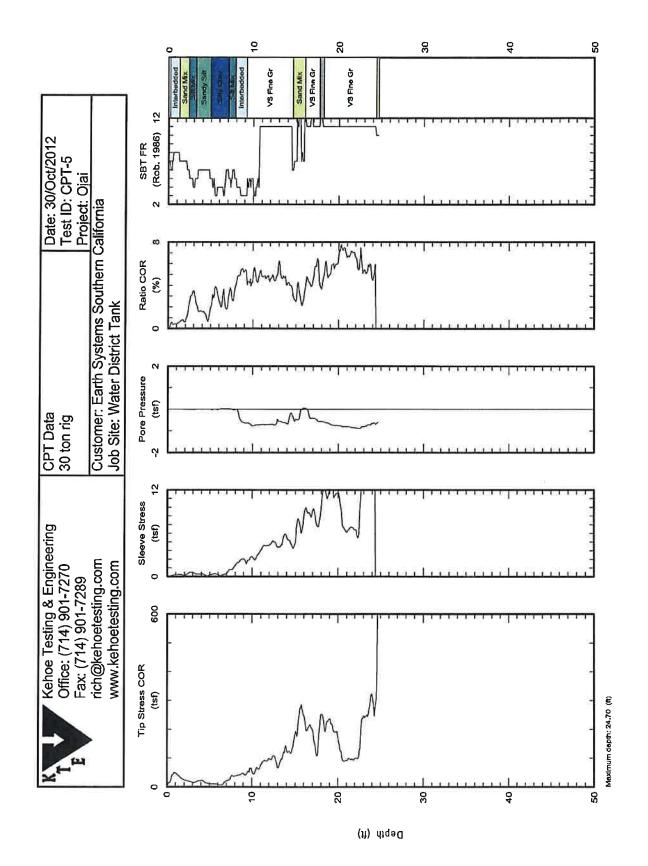
Meiners Oaks Water District Ventura County, CA

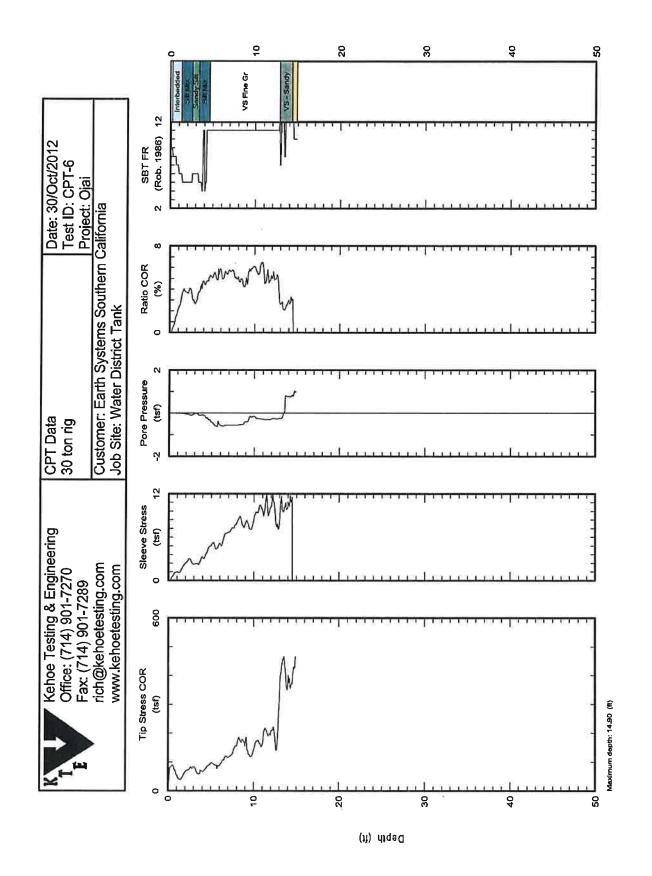


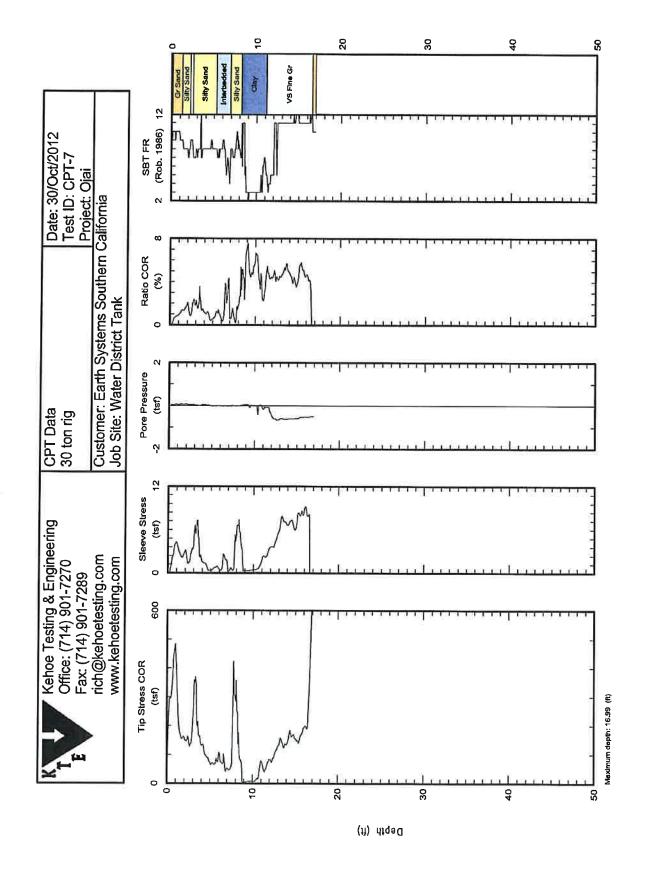

Earth Systems Southern California

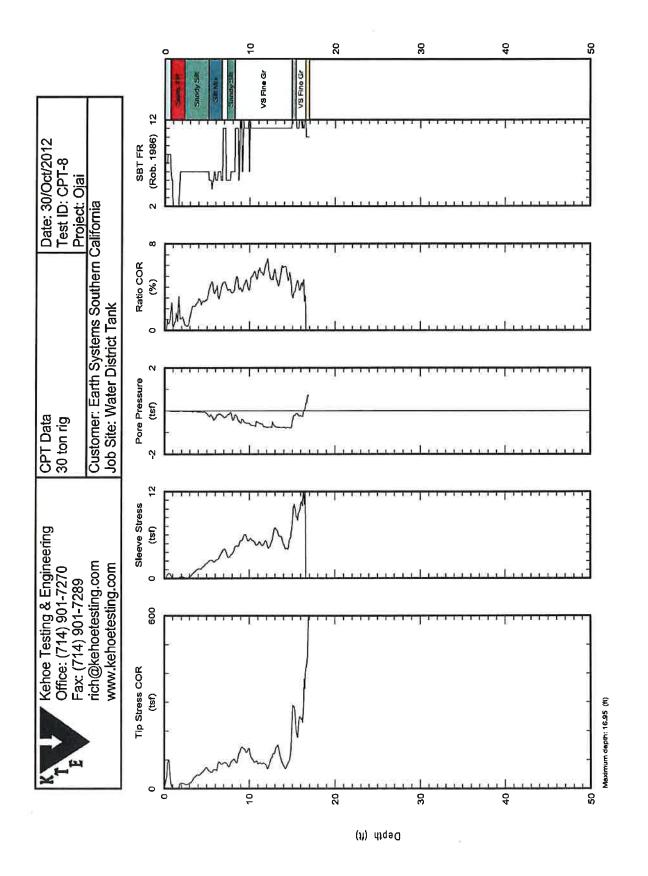

NOVEMBER 2012 V

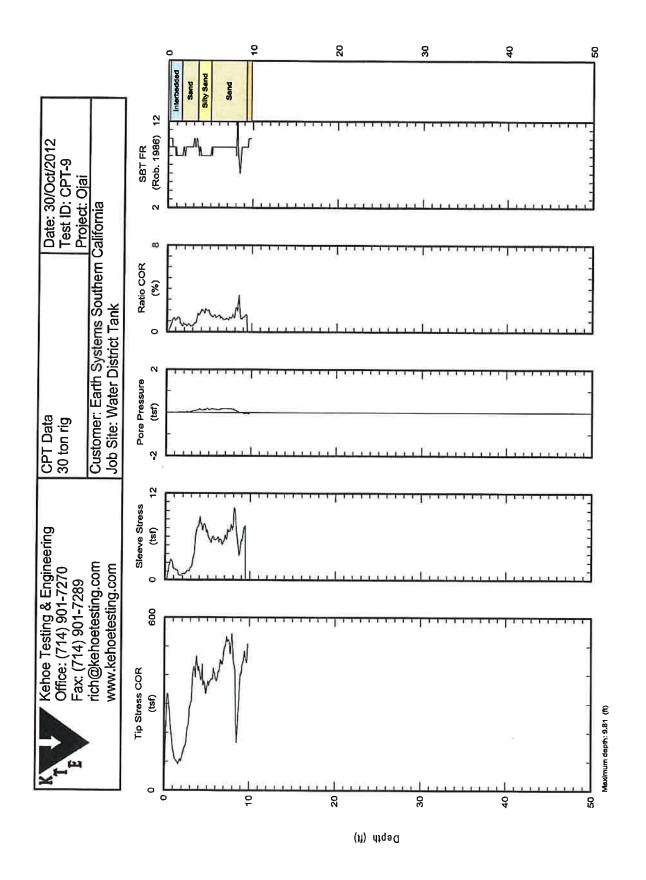

12 VT-24086-02

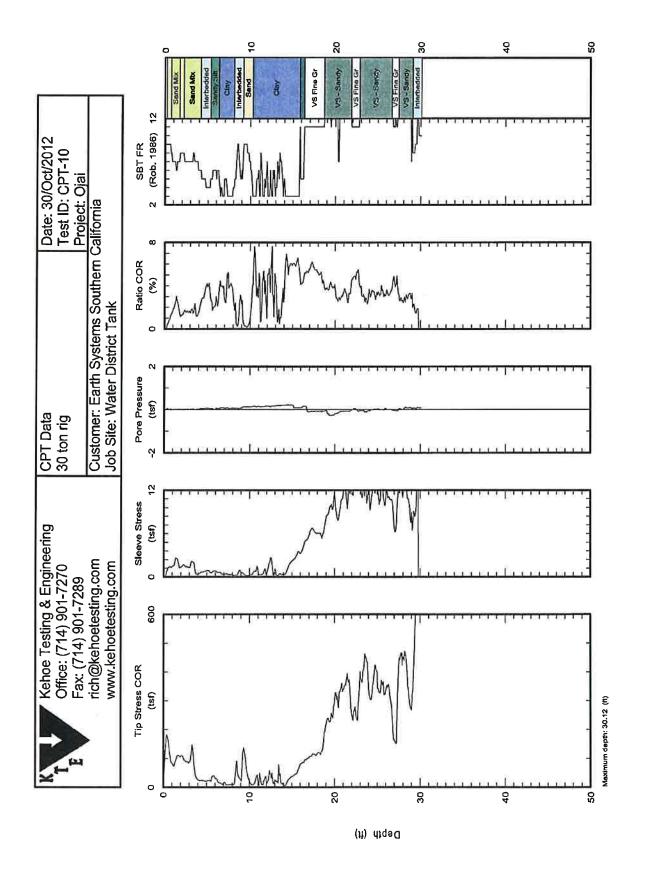

SCALE: 1" = 5' (VERTICAL & HORIZONTAL)

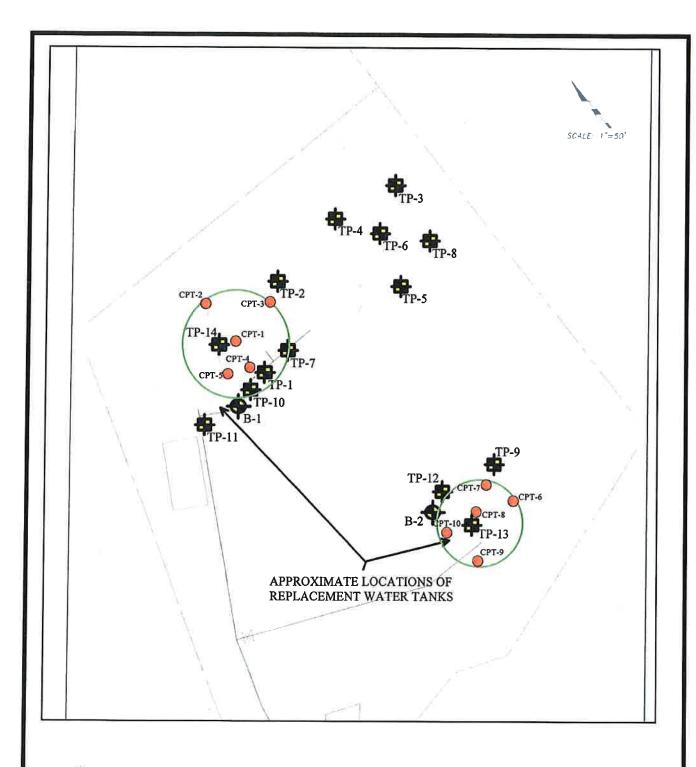












TP-1 **TEST PIT LOCATIONS**

BORING LOCATIONS

CPT-1

CPT BORING LOCATIONS

SITE PLAN

Meiners Oaks Water District Ventura County, California

Earth Systems
Southern California

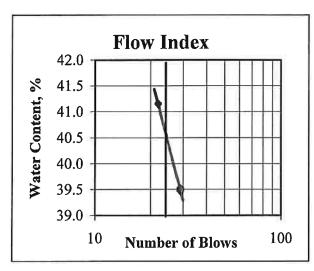
NOVEMBER 2012

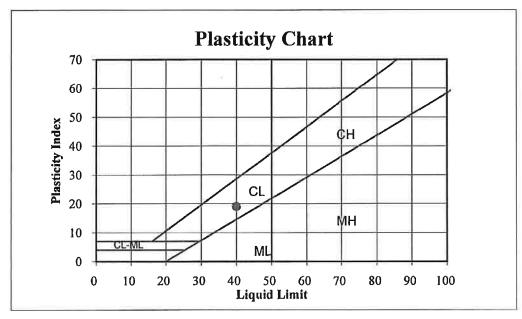
VT-24086-02

File No.: VT-24086-01

PLASTICITY INDEX

ASTM D-4318

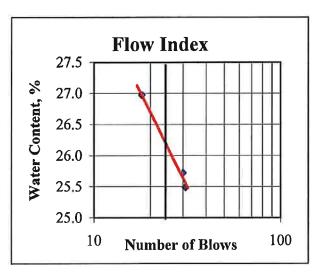

Job Name: Meiners Oaks Water District

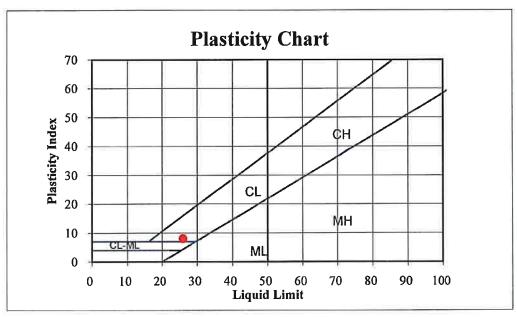

Sample ID: TP 13 Soil Description: CL

D	ΔT	$\Gamma \Lambda$	T2	IM	M	ARY
	~ .	_	474	/ I V II		~

TEST RESULTS

Number of Blows:	22	29	29	LIQUID LIMIT	40	_
Water Content, %	41.2	39.5	39.5	PLASTIC LIMIT	21	
Plastic Limit:	21.0	21.2	P	LASTICITY INDEX	19	

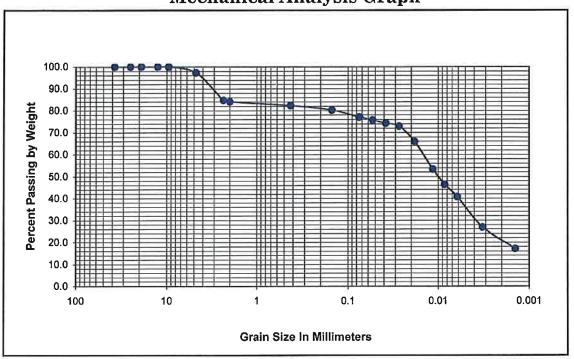

Job Name: Meiners Oaks Water District

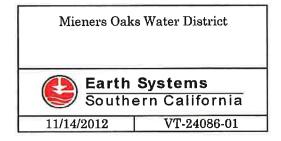

Sample ID: TP 14 Soil Description: CL-ML

DATA SUMMARY

TEST RESULTS

Number of Blows:	18	30	31	LIQUID LIMIT	26
Water Content, %	27.0	25.7	25.5	PLASTIC LIMIT	18
Plastic Limit:	17.8	17.5	P	LASTICITY INDEX	8



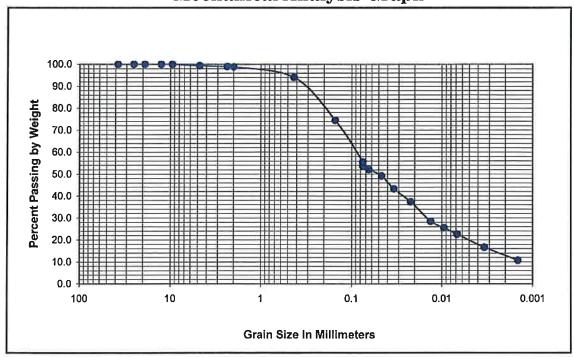

Sample Number TP 13 Date: 11/14/2012

Tech. SD

Mechanical Analysis Graph

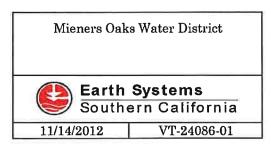
		Summary of	Sieve Resul			
Mechanic	al Analysis	Hydromete	r Analysis	Particle Distribution		
Sieve	Percent	Particle	Percent	Particle	Percent of	
Size	Passing	Diameter	Passing	Name	Sample	
1 1/2	100.0	0.0745	77.1	Gravel	2.6	
1	100.0	0.0533	75.7	Sand	20.3	
3/4	100.0	0.0381	74.3	Silt	46.8	
1/2	100.0	0.0273	72.9	Clay	30.3	
3/8	100.0	0.0182	65.9			
#4	97.4	0.0115	53.4			
#8	84.8	0.0084	46.4			
#10	84.1	0.0062	40.8			
#40	82.3	0.0032	26.9			
#100	80.2	0.0014	17.1			
#200	77.1	U.***				

Sample Number TP 14


Date:

11/14/2012

Tech.


SD

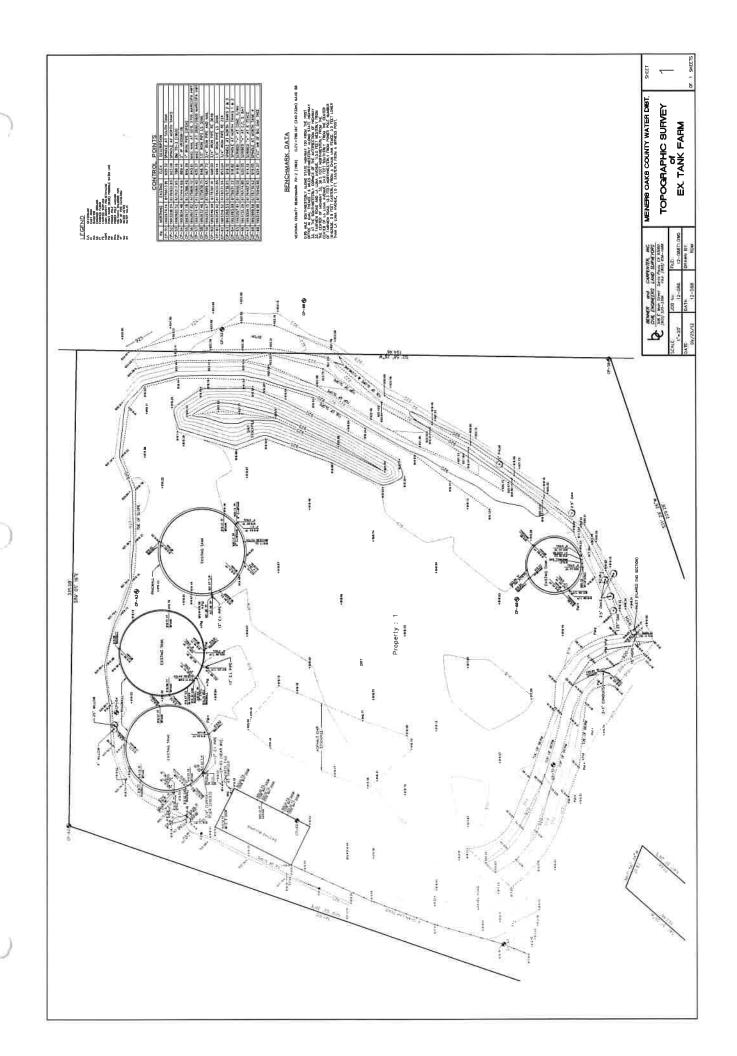
Mechanical Analysis Graph

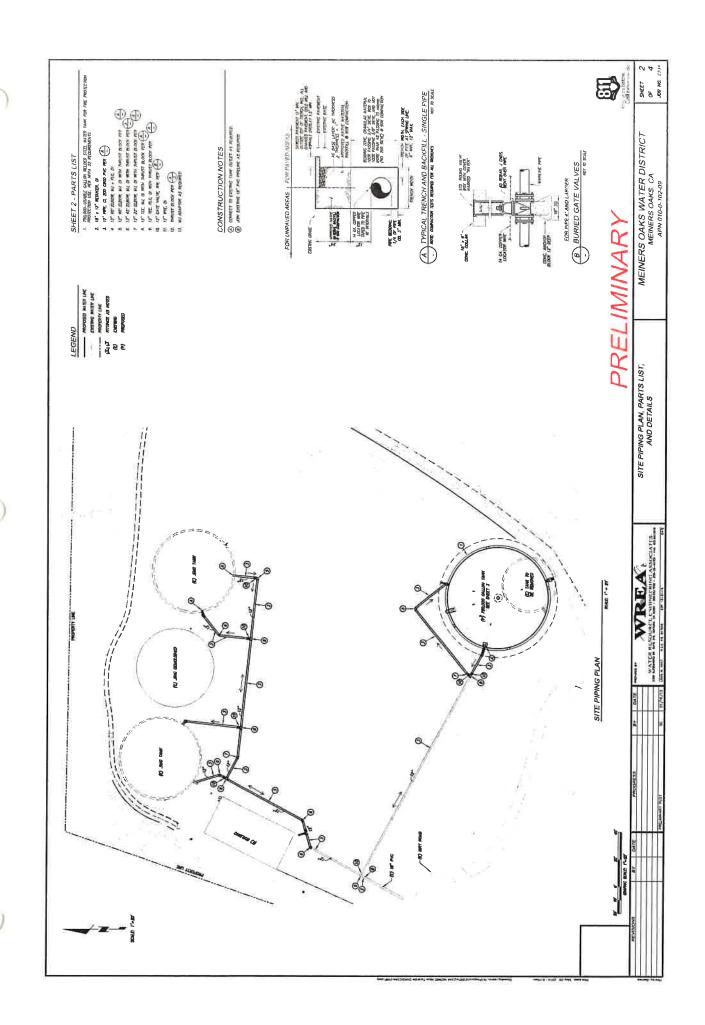
		Summary of S	Sieve Resu	ılts
Mechanic	al Analysis	Hydromete	r Analysis	
Sieve	Percent	Particle	Percent	
Size	Passing	Diameter	Passing	
1 1/2	100.0	0.0746	53.6	
1	100.0	0.0644	52.1	
3/4	100.0	0.0463	49.2	
1/2	100.0	0.0337	43.3	
3/8	100.0	0.0220	37.4	
#4	99.4	0.0132	28.5	
#8	99.0	0.0095	25.5	
#10	98.8	0.0068	22.6	
#40	94.1	0.0034	16.7	
#100	74.5	0.0015	10.8	
#200	55.5			

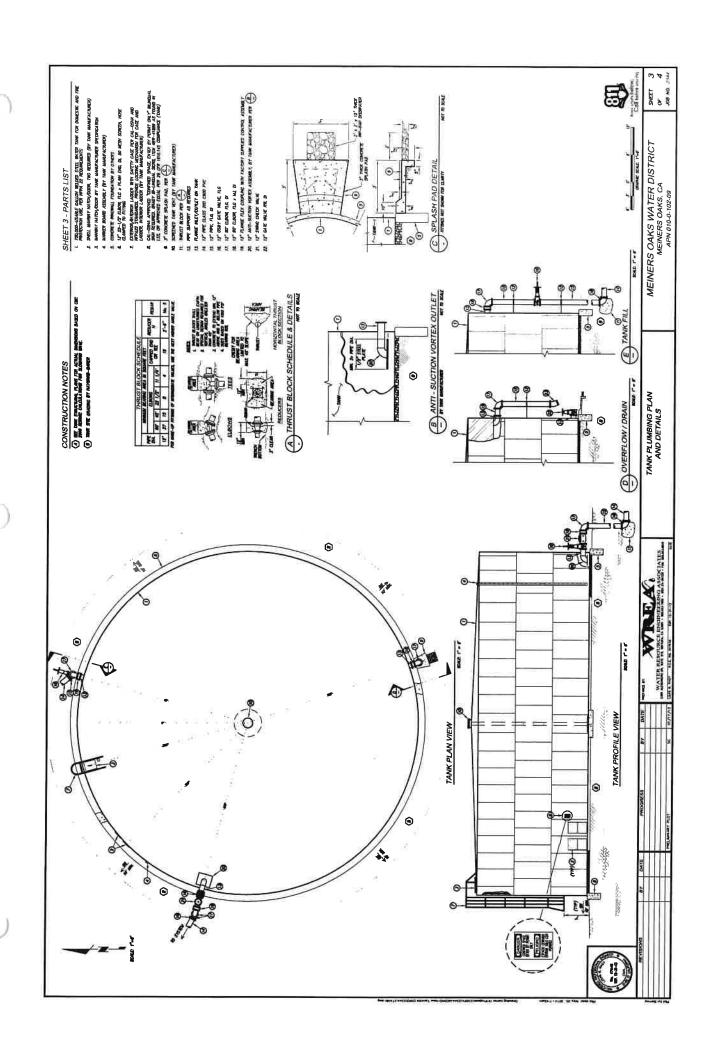
Particle	istribution Percent of
Name	Sample
Gravel	0.6
Sand	43.8
Silt	37.5
Clay	18.1

CERTIFICATE OF ANALYSIS

Client: Earth Systems Southern California CAS LAB NO: 123321


Date Sampled: 11/07/12 Date Received: 11/07/12


Analyst: AN


Sample Matrix: Soil

WET CHEMISTRY SUMMARY

COMPOUND	RESULT	UNITS	DF	PQL	METHOD	ANALYZED
CAS Lab #: 12332 Sample ID: TP13	1-01					
pH (Corrosivity)	7.3	s.u.	1		9045	11/08/12
CAS Lab #: 12332: Sample ID: TP14	1-02			5		8
pH (Corrosivity)	7.2	s.u.	1		9045	11/08/12
Organic Matter	2.8	* * *	1	0.05	ASTM D2974	11/08/12

FOR TWO PROPOSED WATER TANKS MEINERS OAKS COUNTY WATER DISTRICT MEINERS OAKS AREA VENTURA COUNTY, CALIFORNIA

VT-24086-01 FEBRUARY 6, 2009

PREPARED FOR
MEINERS OAKS COUNTY WATER DISTRICT

BY
EARTH SYSTEMS
SOUTHERN CALIFORNIA
1731-A WALTER STREET
VENTURA, CALIFORNIA