

2025 Consumer Confidence Report (2024 Data)

Last year, as in years past, your tap water met all EPA and State drinking water health standards. Meiners Oaks Water District has delivered safe drinking water that did not violate any maximum contaminant levels. This annual report details where your water comes from, what it contains, and how it compares to the State standards.

Drinking water, including bottled water, may reasonably be expected to contain small amounts of specific contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. For more information about contaminants and potential health effects, please call the EPA's Safe Drinking Water Hotline at 1-800-426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immune-compromised persons such as those with cancer undergoing chemotherapy, who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800- 426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the land's surface or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material. Water can also pick up substances resulting from the presence of animals or human activity. Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, may come from sewage treatment plants, septic systems, agricultural and livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, can naturally occur orresult from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides may come from various sources, such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, are byproducts of industrial processes and petroleum production and can also come from gas stations, urban stormwater runoff, and septic systems.

- Radioactive contaminants can be naturally occurring or be the result of oiland gas production and mining activities.
- Disposing of unused, unwanted, and expired medications. It was once common practice to flush these <u>medications</u> (also known as <u>pharmaceuticals</u>) down the toilet. Your doctor or pharmacist may have directed you to do this. We now know that these substances are detrimental to our environment, affecting the ground, water, and air around us. Please return all unused medications to your pharmacist.
- Department of Health and EPA regulations also establish limits for contaminants in bottled water that must provide the same protection for public health.

For more information, please look to (www.nodrugsdownthedrain .org)
To ensure that tap water is safe to drink, the USEPA and the California Department of Public Health (CDPH) have established regulations that limit the presence of specific contaminants in water provided by public water systems. Department regulations also establish limits for contaminants in bottled water that must provide the same protection for public health.

Sources of Your Water

Your water comes from four District wells drilled 100 to 300 feet into underground aquifers. MOWD has two 4" connections to receive surface water from Lake Casitas. Customers may receive Lake Casitas surface water if our wells require repair or are unable to meet system demand. Water purchased from Casitas is treated with chloramines, a combination of chlorine and a small amount of ammonia. People on dialysis should ensure that they are using the proper filtration. If you have a fish pond or aquarium, the added ammonia may be fatal to your fish if not adequately treated by removing the ammonia content.

Water Conservation

Meiners Oaks Water District adopted Stage 1 conditions effective June 1, 2023. Stage 3 conditions were in effect during 2022. Meiners Oaks Water District encourages its customers to remain diligent in their conservation practices. Lake Casitas currently measures at 96% of its capacity.

Conserving water will help reduce the strain on our wells and lower the water needed from Lake Casitas. It is a precious natural resource that we cannot afford to waste. Please remember to use positive shut-off valves when washing your car, watering your plants, or gardening. Use low-flow shower heads and faucets. Low-flow toilets are

also a big water saver. If you cannot afford low-flow fixtures or any of the many other water-saving devices available to you as a customer of Meiners Oaks

Water District, you are eligible for rebates through Casitas Municipal Water District. Another way to save water is by using smart controllers for irrigation valves. They are available through the Casitas Municipal Water District rebate program and most irrigation supply houses. Please inform the Casitas Municipal Water District that you are one of our customers and present them with a current water bill from our district. They will take it from there. Please contact <u>Casitas MWD at (805) 649-2251</u> for more information.

For more information about saving water and doing your part go to www.bewaterwise.com or www.meinersoakswater.org or www.casitaswater.org

2024 Consumer Confidence Report

Water System Name: MEINERS OAKS CWD Report Date: March 2025

We test the drinking water quality for many constituents as required by state and federal regulations. This report shows the results of our monitoring for the period of January 1 - December 31, 2024.

Este informe contiene información muy importante sobre su agua potable. Tradúzcalo ó hable con alquien que lo entienda bien.

Type of water source(s) in use: According to SWRCB records, the Sources Well 01 and Well 02 are Groundwater under the influence of Surface Water. This Assessment was done using the Default Groundwater System Method. According to SWRCB records, the Sources Well 04, and Well 07 are Groundwater. This Assessment was done using the Default Groundwater System Method.

Your water comes from 6 source(s): Well 01, Well 02, WELL 04, WELL 04A, Well 07 and CMWD.

Opportunities for public participation in decisions that affect drinking water quality: Regularly scheduled water board meetings are held at 202 W. El Roblar every 3rd Tuesday of each month at 6:00 pm. Virtual meeting links are also available.

For more information about this report, or any questions relating to your drinking water, please call (805) 646-2114 and ask for Justin Martinez or email <u>justin@meinersoakswater.com</u> or visit our website at <u>www.meinersoakswater.org</u>.

TERMS USED IN THIS REPORT

Maximum Contaminant Level (MCL): The highest level of contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental Protection Agency (USEPA).

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Primary Drinking Water Standards (PDWS): MCLs and MRDLs for the contaminants that affect health along with their monitoring and reporting requirements, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for the contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL levels.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow.

Level 1 Assessment: A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

ND: not detectable at testing limit

mg/L: milligrams per liter or parts per million (ppm)

ug/L: micrograms per liter or parts per billion (ppb)

pCi/L: picocuries per liter (a measure of radiation)

NTU: Nephelometric Turbidity Units

umhos/cm: micro mhos per centimeter

The sources of drinking water: (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

- *Microbial contaminants*, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- *Inorganic contaminants*, such as salts and metals, that can be naturally-occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- *Pesticides and herbicides,* that may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, that are by-products if industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, agricultural application, and septic systems.
- Radioactive contaminants, that can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the USEPA and the State Water Resource Control Board (State Water Board) prescribe regulations that limit the amount of certain contaminants in water provided by public water systems. State Water Board regulations also establish limits for contaminants in bottled water that provide the same protection for public health.

Table(s) 1, 2, 3, 4, 5, 6 and 7 list all of the drinking water contaminants that were detected during the most recent sampling for the constituent. The presence of these contaminants in the water does not necessarily indicate that the water poses a health risk. The State Water Board allows us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of the data, though representative of the water quality, are more than one year old.

Any violation of MCL, AL or MRDL is highlighted. Additional information regarding the violation is provided later in this report.

Table 1 - SAMPLING RESULTS SHOWING THE DETECTION OF COLIFORM BACTERIA									
Microbiological Contaminants (complete if bacteria detected)	Highest No. of Detections	No. of Months in Violation	MCL	MCLG	Typical Sources of Contaminant				
Total Coliform Bacteria	0 (2024)	ND	no more than 1 positive monthly sample		Naturally present in the environment.				

Tabl	Table 2 - SAMPLING RESULTS SHOWING THE DETECTION OF LEAD AND COPPER									
Lead and Copper (complete if lead or copper detected in last sample set)	Sample Date	No. of Samples	90th percentile level detected	No. Sites Exceeding AL	AL	PHG	Typical Sources of Contaminant			
Copper (mg/L)	(2023)	20	0.32	0	1.3	.3	Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives			

	Table 3 - SAMPLING RESULTS FOR SODIUM AND HARDNESS										
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant					
Sodium (mg/L)	(2020 - 2023)	58	55 - 61	none	none	Salt present in the water and is generally naturally occurring					
Hardness (mg/L)	(2020 - 2023)	493	442 - 554	none	nono	Sum of polyvalent cations present in the water, generally magnesium and calcium, and are usually naturally occurring					

Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL [MRDL]	PHG (MCLG) [MRDLG]	Typical Sources of Contaminant
Arsenic (ug/L)	(2020 - 2023)	ND	ND - 2	10	0.004	Erosion of natural deposits; runoff from orchards, glass and electronics production wastes
Chromium (ug/L)	(2020 - 2023)	ND	ND - 14	50.0	n/a	Discharge from steel and pulp mills and chrome plating; erosion of natural deposits
Fluoride (mg/L)	(2020 - 2023)	0.5	0.4 - 0.6	2	1	Erosion of natural deposits; water additive that promotes strong teeth; discharge from fertilizer and aluminum factories.
Nitrate as N (mg/L)	(2022 - 2024)	8.2	0.5 - 17.6	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Nitrate + Nitrite as N (mg/L)	(2020 - 2023)	3.8	ND - 6.9	10	10	Runoff and leaching from fertilizer use; leaching from septic tanks and sewage; erosion of natural deposits
Selenium (ug/L)	(2020 - 2023)	7	ND - 11	50	30	Discharge from petroleum, glass, and metal refineries; erosion of natural deposits; discharge from mines and chemical manufacturers; runoff from livestock lots(feed additive)
Gross Alpha (pCi/L)	(2023)	ND	ND - 1.11	15	(0)	Erosion of natural deposits.

Table 5 - DETE	Table 5 - DETECTION OF CONTAMINANTS WITH A <u>SECONDARY</u> DRINKING WATER STANDARD										
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL	PHG (MCLG)	Typical Sources of Contaminant					
Chloride (mg/L)	(2020 - 2023)	42	24 - 57	500	n/a	Runoff/leaching from natural deposits; seawater influence					
Iron (ug/L)	(2020 - 2023)	36	ND - 120	300	n/a	Leaching from natural deposits; Industrial wastes					
Specific Conductance (umhos/cm)	(2020 - 2023)	1158	1110 - 1210	1600	n/a	Substances that form ions when in water; seawater influence					
Sulfate (mg/L)	(2020 - 2023)	279	220 - 373	500	n/a	Runoff/leaching from natural deposits; industrial wastes					
Total Dissolved Solids (mg/L)	(2020 - 2023)	784	740 - 850	1000	n/a	Runoff/leaching from natural deposits					
Turbidity (NTU)	(2020 - 2024)	0.08	ND - 0.50	5	n/a	Soil runoff					
Zinc (mg/L)	(2023)	0.02	n/a	5	n/a	Runoff/leaching from natural deposits					

	Table 6 - DETECTION OF UNREGULATED CONTAMINANTS										
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	Notification Level	Health Effects						
Boron (mg/L)	(2020 - 2023)	0.6	0.6 - 0.7	1	Boron exposures resulted in decreased fetal weight (developmental effects) in newborn rats.						
Vanadium (ug/L)	(2020 - 2023)	1	ND - 4	50	Vanadium exposures resulted in developmental and reproductive effects in rats.						

	Table 7 - ADDITIONAL DETECTIONS										
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	Notification Level	Typical Sources of Contaminant						
Calcium (mg/L)	(2020 - 2023)	135	121 - 151	n/a	n/a						
Magnesium (mg/L)	(2020 - 2023)	38	34 - 43	n/a	n/a						
pH (units)	(2020 - 2023)	7.47	7.1 - 8.09	n/a	n/a						

Alkalinity (mg/L)	(2020 - 2023)	228	160 - 260	n/a	n/a
Aggressiveness Index	(2020 - 2023)	12.3	11.9 - 13.0	n/a	n/a
Langelier Index	(2020 - 2023)	0.43	0.04 - 1.2	n/a	n/a

Table	Table 8 - DETECTION OF DISINFECTANT/DISINFECTANT BYPRODUCT RULE										
Chemical or Constituent (and reporting units)	Sample Date	Average Level Detected	Range of Detections	MCL (MRDL)	PHG (MCLG)		Typical Sources of Contaminant				
Total Trihalomethanes (TTHMs) (ug/L)	(2024)	7	ND - 23	80	n/a	No	By-product of drinking water disinfection				
Chlorine, Total (mg/L)	(2024)	2.80	0.9 - 2.8	4.0	4.0		Drinking water disinfectant added for treatment.				
Chlorine, Free (mg/L)	(2024)	1.47	0.29 - 1.78	4.0	4.0	No	Drinking water disinfectant added for treatment.				
Haloacetic Acids (five) (ug/L)	(2024)	2.25	ND - 5	60	n/a	No	By-product of drinking water disinfection				

Additional General Information on Drinking Water

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts if some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline (1-800-426-4791).

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by *Cryptosporidium* and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Lead Specific Language for Community Water Systems: If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with the service lines and home plumbing. *Meiners Oaks Water District* is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/lead.

Summary Information for Violation of a MCL, MRDL, AL, TT, or Monitoring and Reporting Requirement

VIOLATION	VIOLATION OF A MCL,MRDL,AL,TT, OR MONITORING AND REPORTING REQUIREMENT									
Violation	Explanation	Duration	Actions Taken To Correct the Violation	Health Effects Language						
None										

2024 Consumer Confidence Report

Drinking Water Assessment Information

Assessment Information

A source water assessment was conducted for the WELL 01, WELL 02, WELL 04, and WELL 07 of the MEINERS OAKS CWD water system in March, 2001.

- Well 01 is considered most vulnerable to the following activities not associated with any detected contaminants:

 Agricultural Drainage. Septic systems low density [<1/acre]
- Well 02 is considered most vulnerable to the following activities not associated with any detected contaminants: Agricultural Drainage
- WELL 04 is considered most vulnerable to the following activities not associated with any detected contaminants: Agricultural Drainage
- Well 07 is considered most vulnerable to the following activities not associated with any detected contaminants:

 Agricultural Drainage Sewer collection systems Wells Agricultural/ Irrigation
- CMWD is considered a backup water source. Please see attached CMWD 2023 Consumer Confidence Report.

Acquiring Information

A copy of the complete assessment may be viewed at: SWRCB Division of Drinking Water 1180 Eugenia Place Suite 200 Carpinteria, CA 93013

You may request a summary of the assessment be sent to you by contacting: Jeff Densmore District Engineer 805 566 1326

CASITAS MUNICIPAL WATER DISTRICT, PWS CA5610024 Water Quality Summary, 2024 Data

Mathia	manopa traca district					ater Quality Summi	ury, 202 1 0	u cu		Train-gartings Upon.
Material	WATER CLARITY	REGULATORY STANDARD	PHG. (MCLG)	FILTED FEEL LIES				SAMPLE SOURCE	& YEAR TESTED	SOURCE OF CONSTITUENT
Content Con	Direct Filtration	Treatment Technique (TT)	, (FILTER EFFLUEN	V I	RANGE		Filter E	ffluent	
Marie 1980	- 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	TT < 1	NA	Highest Value = 0	.21	0.01 - 0.21		20	124	
Microst Micr	Combined Filter Effluent Turbidity* (NTU)	≤ 0.20 NTU in at least 95 % of measurements	NA	99.96% = lo	west monthly % of	samples meeting turbidity limits		20	124	Soil run-off
March Marc	Individual Filter Effluent Turbidity (NTU)	TT < 1	NA	Treatment Technique Vic	lation: Failure to	monitor individual filter efflue	ent turbidity*	20	124	
Moderate Control Moderate Co	MICROBIOLOGICAL	MCL or (TT)	(MCLG)		DISTRIBUTI	ON SYSTEM		Distribution	on System	
Process			(525)	HIGHEST # POSITIVE S	AMPLES	NUMBER OF MONTHS IN	I VIOLATION			
Modera Colorado Mode Mod	Fotal Coliform Bacteria ^b	(More than 1 positive per month) ^b	(0)			0				Naturally present in the environment
Marcia	E. Coli ^C	Revised Total Coliform Rule: E. coli MCL ^C	(0)	· ·		0		20	24	Human and animal fecal waste
March Marc	INORGANIC CHEMICALS	MCL	PHG					Lake Casitas Treated	Mira Monte	
Process Pro										
1		1	2					+		
			1				1	+		
Designation			10	0.4			0.7-1.4	2024	2024	Runoff and leaching from fertilizer use; leaching from tanks and sewage; erosion from natural deposits
Notes 1,5 1 1,5			PHG or [MRDLG]					Distribution	on System	
Market Asking Market					ONAL RAA [®]		RANGE			
March Marc										
Magustory Action Level (RAL)								.		· · · · · · · · · · · · · · · · · · ·
Proceedings	Haloacetic acids (ppb)	60	NA	54				20	124	By-product of drinking water disinfection
Part	LEAD AND COPPER	Regulatory Action Level (RAL)	PHG	Number of Samples Collected			· ·	Individual Taps		
Secondary 15 16 18 18 18 18 18 18 18	ead (ppb) ^f	15	0.2	33	0	ND	ND - ND	2023 ^e		Internal corrosion of household plumbing systems; discharges from industrial manufacturers; erosion of natural products
SECONDARY ASSTHETICS TANDARDS & ADDITIONAL CONSTITUENTS SECONDARY ASSTHETICS TANDARDS & ADDITIONAL CONSTITUENTS SECONDARY ASSTHETICS TANDARDS & BANGE NET PROFILE New Tested Ne	Copper (ppm) ^f	1.3	0.3	33	0	0.5	0.1 - 0.6	2023 ^e		Internal corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
Part	ead school (ppb)	15	0.2	Number of schools requesting	ng lead sampling = 4	; Sample locations = 19; Locations	s above RAL = 0	2017 ^e		Internal corrosion of end-user plumbing systems; discharges from industrial manufacturers; erosion of natural products
Secondary Activities (Standary Control (Standa					SECONDARY A	ESTHETIC STANDARDS 8	ADDITIONAL	CONSTITUENTS		
AVERAGE NAME AVERAGE NAME AVERAGE NAME Like Treated MAMW Treated MAWW Treated	SECONDARY AESTHETIC STANDARDS	STATE MCI	DUG	Lake Casitas Trea	ted	Mira Monte Well Tı	reated ^d	Year 1	Tested Tested	SOLIDCE OF CONSTITUENT
No. 1	SECONDARY AESTHETIC STANDARDS	STATE MICE	110	AVERAGE	RANGE	AVERAGE	RANGE	Lake Treated	MMW Treated	SOURCE OF CONSTITUENT
Peedic Conductance (pic/em) 1000	otal Dissolved Solids (ppm)	1000	NA	430	NA	420	NA	2024	2024	Run-off / leaching from natural deposits
Solida (ppm) Solida Soli	Odor Threshold (units)	3	NA	1	ND - 4	1	ND - 4	2024	2024	Naturally-occurring organic materials
ADDITIONAL CONSTITUENTS SECONDARY NCL PHG (NL) NA 150 NA 150 NA 150 NA 2024 2024 Anexative from natural deposes, industrial wasters	pecific Conductance (μS/cm)	1600	NA	668	NA	672	NA	2024	2024	Substances that form ions in water; seawater influence
ADDITIONAL CONSTITUENTS SECONDARY MCL PHG or (NL)	Chloride (ppm)	500	NA	18	NA	21	NA	2024	2024	Run-off/leaching from natural deposits; seawater influence
Name	Sulfate (ppm)	500	NA	170	NA	168	NA	2024	2024	Run-off /leaching from natural deposits; industrial wastes
NA (1000) 200 NA 200 NA 2024 2024 Anturally-occurring element Acidium (ppm) NA NA NA 78 NA 75 NA 2024 2024 Anturally-occurring element NO NOCOTOSNIVE (USEPA) NA 0.1 NA 0.3 NA 2024 2024 Anturally-occurring element NA NA NA NA 260 NA 2024 2024 Anturally-occurring element NA NA NA 25 NA 260 NA 2024 2024 Anturally-occurring element NA NA NA 25 NA 24 NA 2024 2024 Anturally-occurring element NA NA 7.5 NA 7.7 NA 2024 2024 Anturally-occurring element NA NA 7.5 NA 7.7 NA 2024 2024 Anturally-occurring element NA NA NA 3 NA 3 NA 2024 2024 Anturally-occurring element NA NA NA 3 NA 3 NA 2024 2024 Anturally-occurring element NA NA NA 26 NA 3 NA 2024 2024 Anturally-occurring element NA NA NA 26 NA 3 NA 2024 2024 Anturally-occurring element NA NA NA 26 NA 3 NA 2024 2024 Anturally-occurring element NA NA NA 3 NA 2024 2024 Anturally-occurring element NA NA NA 3 NA 2024 2024 Anturally-occurring element NA NA SONA 9.8 NA 3 NA 2024 2024 Anturally-occurring element NA NA SONA 9.8 NA 3 NA 2024 2024 Anturally-occurring element NA NA 15 NA 3 NA 2024 2024 Anturally-occurring element NA NA 15 NA 3 NA 2024 2024 Anturally-occurring element NA NA 15 NA 3 NA 2024 2024 Anturally-occurring element NA NA 15 NA 3 NA 2024 2024 Anturally-occurring element NA NA 15 NA 3 NA 2024 2024 Anturally-occurring element NA NA 15 NA 3 NA 2024 2024 Anturally-occurring element NA NA 15 NA 15 NA 15 NA 2024 2024 Anturally-occurring element NA NA 15 NA 15 NA 15 NA 2024 2024 Anturally-occurring element NA NA 15 NA 15 NA 16 NA 2024 2024 Anturally-occurring element NA NA 15 NA 15 NA 16 NA 16 NA 17 NA 18 NA 2024 2024 Anturally-occurring element NA NA 15 NA 15 NA 14 NA 15 NA 16 NA 16 NA 16 NA 16 NA 16 NA 16 NA 17 NA 17 NA 18 NA 2024 2024 Anturally-occurring element NA NA 15 NA 16 NA 18 NA 18 NA 18 NA 2024 2024 Anturally-occurring element NA NA 15 NA 18 NA 18 NA 18 NA 2024 2024 Anturally-occurring element NA NA 15 NA 18 NA 18 NA 18 NA 2024 2024 Anturally-occurring element NA NA 15 NA 18 NA 2024 2024 Antu	ADDITIONAL CONSTITUENTS	SECONDARY MCL	PHG or (NL)							
NA NA 78 NA 75 NA 2024 2024 Anaturally occurring element Noncorrosive (US EPA) NA 0.1 NA 0.3 NA 2024 2024 didator of corrosivity, Water with a positive Langlier Index can be considered as non-corrosive (US EPA) NA NA 0.1 NA 0.3 NA 2024 2024 didator of corrosivity, Water with a positive Langlier Index can be considered as non-corrosive (US EPA) NA NA 286 NA 2024 2024 **Narches** is the sum of polywalent cations present in the water, generally magnesium and calcium. The cations are usually naturally occurring (Inf. 78 gps) NA NA 24 NA 2024 2024 Anaturally occurring element NA NA 7.5 NA 2024 2024 Anaturally occurring element NA NA 3 NA 2024 2024 Anaturally occurring element NA NA 3 NA 2024 2024 Anaturally occurring element NA NA NA 3 NA 2024 2024 Anaturally occurring element NA NA NA 3 NA 2024 2024 Anaturally occurring element NA NA NA 3 NA 2024 2024 Anaturally occurring element NA NA NA 3 NA 2024 2024 Anaturally occurring element NA NA 16 NA 3 NA 2024 2024 Anaturally occurring element NA NA 18 NA 2024 2024 Anaturally occurring element NA NA 18 NA 2024 2024 Anaturally occurring element NA NA 18 NA 3 NA 2024 2024 Anaturally occurring element NA NA 18 NA 3 NA 2024 2024 Anaturally occurring element NA NA 18 NA 3 NA 2024 2024 Anaturally occurring element NA NA 18 NA 3 NA 2024 2024 Anaturally occurring element NA NA 18 NA 3 NA 2024 2024 Anaturally occurring element NA NA 18 NA 3 NA 2024 2024 Anaturally occurring element NA NA 18 NA 18 NA 3 NA 2024 2024 Anaturally occurring element NA NA 18 NA 18 NA 18 NA 2024 2024 Anaturally occurring element NA NA NA 18 NA 18 NA 18 NA 2024 2024 Anaturally occurring element NA NA NA 18 NA 18 NA 2024 2024 Anaturally occurring element NA NA NA 18 NA 18 NA 2024 2024 Anaturally occurring element NA NA NA 18 NA 18 NA 2024 2024 Anaturally occurring element NA NA NA 18 NA 18 NA 2024 2024 Anaturally occurring element NA NA NA 18 NA 18 NA 2024 2024 Anaturally occurring element NA NA NA 18 NA 18 NA 2024 2024 Anaturally occurring element NA NA NA 18 NA 18 NA 2024 202	Alkalinity - Total as CaCO ₃ (ppm)	NA	NA	150	NA	150	NA	2024	2024	A measure of the capacity to neutralize acid
Noncorrosive (US EPA) NA O.1 NA O.3 NA 2024 2024 NA NA NA NA NA NA NA NA NA N	Boron (ppb)	NA	(1000)	200	NA	200	NA	2024	2024	A naturally-occurring element
Aradness - Total as CaCO ₃ (ppm) NA NA NA 297 (17.4 gpg) NA (16.7 g	Calcium (ppm)	NA	NA	78	NA	75	NA	2024	2024	A naturally-occurring element
Agenesium (ppm) NA NA (17.4 gpg) NA (16.7	Corrosivity (Langlier Index) ^f	Noncorrosive (US EPA)	NA		NA		NA	2024	2024	Indicator of corrosivity. Water with a positive Langlier Index can be considered as non-corrosive
H (pH standard units) 6.5-8.5 (USEPA) NA 7.5 NA 7.7 NA 2024 2024 A measure of acidity or alkalinity A measure of acidity or alkalinity NA NA NA NA NA NA NA NA NA N	lardness - Total as CaCO ₃ (ppm)	NA	NA		NA		NA	2024	2024	"Hardness" is the sum of polyvalent cations present in the water, generally magnesium and calcium. The cations are usually naturally occurring
NA NA 26 NA 27 NA 2024 2024 Anturally-occurring element Sodium (ppm) NA NA 26 NA 26 NA 27 NA 2024 2024 "Sodium" refers to the salt present in the water and is generally naturally occurring. Anadium (ppb) NA (50) 3 NA 3 NA 2024 2024 Anturally-occurring element US EPA FIFTH UNREGULATED CONTAMINANT MONITORING RULE (UCMR 5) UNREGULATED CONTAMINANTS MCL PHG (NL) AVERAGE RANGE AVERAGE RANGE Lake Treated MIMW Treated AND NA 15 14-15 15 14-16 2023* 2023* Anturally-occurring element SOURCE OF CONSTITUENT NA NA 18 NA 15 14-15 15 14-16 2023* 2023* Anturally-occurring element NA (NA 500 ppt) NA NA NA 15 NA	Magnesium (ppm)	NA	NA	25	NA	24	NA	2024	2024	A naturally-occurring element
NA NA 26 NA 27 NA 2024 2024 "Sodium" refers to the salt present in the water and is generally naturally occurring. Anadium (pph) NA (50) 3 NA 3 NA 2024 2024 Anaturally-occurring element US EPA FIFTH UNREGULATED CONTAMINANT MONITORING RULE (UCMR 5) UNREGULATED CONTAMINANTS MCL PHG (NL) AVERAGE RANGE RA	pH (pH standard units)	6.5-8.5 (US EPA)	NA	7.5	NA	7.7	NA	2024	2024	A measure of acidity or alkalinity
Anadium (ppb) NA (50) 3 NA 3 NA 2024 2024 Anaturally-occurring element UNREGULATED CONTAMINANTS MCL PHG (NL) AVERAGE RANGE RANGE AVERAGE RANGE AVERAGE RANGE AVERAGE RANGE	Potassium (ppm)	NA	NA	3	NA	3	NA	2024	2024	A naturally-occurring element
UNREGULATED CONTAMINANTS MCL PHG (NL) AVERAGE NA NA NA NA NA NA NA NA NA N	odium (ppm)	NA	NA	26	NA	27	NA	2024	2024	"Sodium" refers to the salt present in the water and is generally naturally occurring.
HGC Lake Casitas Treated Mira Monte Well Treated Year Tested (NL) AVERAGE RANGE AVERAGE RANGE Lake Treated MMW Treated Ithium (ppb) NA NA 15 15 14-15 15 14-16 2023 2023 Anaturally-occurring element Place of Constituent NA (NA 500 ppt) ND	anadium (ppb)	NA	(50)							A naturally-occurring element
(NL) AVERAGE RANGE AVERAGE RANGE Lake Treated MMW Treated ithium (ppb) NA NA NA 15 14-15 15 ND ND ND ND ND ND ND ND ND N										
ithium (ppb) NA NA 15 14-15 15 14-16 2023 ^e 2023 ^e A naturally-occurring element Plandividual Per-and Polyfluoroalkyl NA (NA 500 ppt) ND ND ND ND ND ND ND ND ND N	UNREGULATED CONTAMINANTS	MCL								SOURCE OF CONSTITUENT
29 Individual Per-and Polyfluoroalkyl NA (NA - 500 ppt) ND ND ND ND ND ND ND ND ND N	ithium (ppb)	NA								A naturally-occurring element
	29 Individual Per-and Polyfluoroalkyl									Runoff / leaching from industrial processes , chemical factories, waste sites or sites using aqueous film-forming foam (a type of foam used to fight liquid-

BBREVIATIONS AND DEFINITIONS

eximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to the PHGs (or MCLGs) as is economically and nologically feasible. Secondary MCLs are set to protect the odor, taste and appearance of drinking water.

ximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the U.S. Environmental

aximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that the addition of a disinfectant is necessary for ontrol of microbial contaminant

aximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits

ning Annual Average (RAA): Some MCL's are determined based on the running annual average which is calculated by averaging all sample results within the previous four quarters. onal running annual average includes results averaged over the previous four quarters for a specific sample site.

VATER QUALITY TABLE FOOTNOTES

Turbidity is a measure of the cloudiness of water and is a good measure of water quality and filtration performance; the turbidity requirement for filtration of Lake Casitas Treated water is 0.2 NTU in the bined filter effluent for at least 95 % of the measurements in each month

For systems collecting fewer than 40 samples per month: Two or more total-coliform positive monthly samples is a treatment technique trigger. During 2024 Casitas collected 159 routine distribution system nples for total coliform bacteria testing under the Revised Total Coliform Rule. Total coliform bacteria were not detected in any of these samples

Based on the Revised Total Coliform Rule, an E-Coli MCL violation occurs when 1) a routine and associated repeat sample(s) are total coliform-positive and either is E. coli-positive, 2) the system fails to take peat samples following an E. coli -positive routine sample, or 3) the system fails to analyze a total coliform-positive repeat sample for E. coli . Casitas did not have any E. coli MCL violations during 2024.

Notification Level (NL): Health based advisory levels established by the State Board for chemicals in drinking water that lack MCLs.

Primary Drinking Water Standards (PDWS): MCLs, MRDLs and treatment techniques (TT) for contaminants that affect health, along with their monitoring and reporting requirements Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency. Regulatory Action Level (RAL): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Secondary Drinking Water Standards (SDWS); MCLs for contaminants that affect taste, odor, or appearance of the drinking water. Contaminants with SDWSs do not affect the health at the MCL

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water. Unregulated Contaminant Monitoring Rule (UCMR): US EPA uses to collect data for contaminants that are suspected to be in drinking water and do not have health-based standards under the Safe

UCMR 5; The fifth set of chemical contaminant monitoring under the Unregulated Contaminant Monitoring Rule. Samples collected under UCMR 5 are analyzed for Lithium and 29 individual Per-and

polyfluoroalkyl substances using analytical methods developed by the US EPA and consensus organizations

US EPA - United States Environmental Protection Agency

NA - Not Applicable or Available ND - None Detected at or above the limits of

detection for reporting purposes

NL - Notification Level

NS - No Sample

NTU - Nephelometric Turbidity Units (a measure of turbidity)

PFAS - Used to refer to the synthetic chemical group of Pe and polyfluoroalkyl substances

ppm - Parts per million, or milligrams per liter (mg/L) ppb - Parts per billion, or micrograms per liter (ug/L)

ppt -Parts per trillion, or nanograms per liter (ng/L)

RAA: Running Annual Average

μS/cm - Micro Siemens per Centimeter (a measure of

gpg - Grains per gallon, an alternative unit used to measur

🖈 Casitas is required to monitor your drinking water for specific contaminants on a regular basis. Results of regular monitoring are an indicator of wheth

f) Casitas has implemented a corrosion control plan by adding a small amount of phosphate to the water to lower corrosivity and reduce copper levels.

d) When operated, Mira Monte Well water receives blending treatment with lake Casitas Treated water, monitoring results are of the blended water,

data are from the most recent sampling, and although representative, are more than one year old.

g) Highest running annual average and locational running annual averages are used to calculate the MCL / MRDL and include sample results from a previous reporting period, associated headaches. Operational procedures were modified to prevent a reoccurrence. whereas range only includes individual sample results from 2024.

e) The State monitoring requirements for some contaminants is less than once per year because the concentrations of these contaminants do not change frequently. These

or not your drinking water meets health standards. An individual filter was not monitored for effluent turbidity between 12/03/2024 and 12/05/2024. The combined filter effluent and all other individual filter effluent turbidimeters were functioning and met filtration standards with a maximum combined filter effluent of 0.06 NTU during this period. There was no need to use alternative water supplies and no further action was required. Turbidity has no health effects, however, high levels of turbidity can interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence of $disease-causing\ organisms.\ These\ organisms\ include\ bacteria,\ viruses,\ and\ parasites\ that\ can\ cause\ symptoms\ such\ as\ nausea,\ cramps,\ diarrhea,\ and\ parasites\ that\ can\ cause\ symptoms\ such\ as\ nausea,\ cramps,\ diarrhea,\ and\ parasites\ that\ can\ cause\ symptoms\ such\ as\ nausea,\ cramps,\ diarrhea,\ and\ parasites\ that\ can\ cause\ symptoms\ such\ as\ nausea,\ cramps,\ diarrhea,\ and\ parasites\ that\ can\ cause\ symptoms\ such\ as\ nausea,\ cramps,\ diarrhea,\ and\ parasites\ that\ can\ cause\ symptoms\ such\ as\ nausea,\ cramps,\ diarrhea,\ and\ parasites\ that\ can\ cause\ symptoms\ such\ as\ nausea,\ cramps,\ diarrhea,\ and\ parasites\ that\ can\ cause\ symptoms\ such\ as\ nausea,\ cramps,\ diarrhea,\ and\ parasites\ that\ can\ cause\ symptoms\ such\ as\ nausea,\ cramps,\ diarrhea,\ and\ parasites\ that\ can\ cause\ symptoms\ such\ as\ nausea,\ cramps,\ diarrhea,\ and\ parasites\ that\ can\ cause\ symptoms\ such\ as\ nausea,\ cramps,\ diarrhea,\ and\ parasites\ that\ can\ cause\ symptoms\ such\ as\ nausea,\ cramps,\ diarrhea,\ dia$